Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

596 results about "DNA methylation" patented technology

DNA methylation is a process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. In mammals DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and carcinogenesis.

Primer pair, probe and kit used for noninvasive polygene methylation combination detection for early stage colorectal cancer and applications thereof

The invention relates to a primer pair and a probe used for noninvasive polygene methylation combination detection for early stage colorectal cancer, and includes the primer pair and the probe used for detecting methylation of genes Spetin9, NDRG4, BMP3, THBD and SDC2 and the primer pair and the probe for internal reference ACTB; the sequences of the primer pair and the probe are represented as the SEQ ID No.1 to the SEQ ID No.18. The invention also provides a kit containing the primer pair and the probe and applications thereof. The application method includes free DNA extraction from a plasma specimen, sulfite conversion, PCR amplification reaction, fluorescent signal detection and result determination. The kit and the method are suitable for methylation detection of the five genes Spetin9, THBD, SDC2, NDRG4 and BMP3 in human peripheral blood; compared with a conventional colorectal cancer diagnosis method, the application method fully utilizes the free DNA extraction from a plasma specimen, the DNA methylation and QPCR associated technologies, thus developing the kit having high sensitivity and specificity. The primer pair, probe and kit are used for performing early stage noninvasive screening to human colorectal cancer.
Owner:上海酷乐生物科技有限公司

Methods of copying the methylation pattern of DNA during isothermal amplification and microarrays

A method for copying the methylation patterns of molecules of genomic DNA (MGD) during isothermal amplification of the MGD comprising obtaining MGD, copying the methylation patterns of the MGD using a DNA methylation-maintenance enzyme, while isothermally amplifying the MGD using a DNA polymerase with strand displacement activity, under conditions that simultaneously promote activity of the DNA methylation-maintenance enzyme and the DNA polymerase; a method for copying the methylation patterns in double-stranded DNA molecules during isothermal amplification of the DNA molecules comprising obtaining DNA molecules, contacting the DNA molecules with transposable elements and an enzyme, which can randomly insert the transposable elements into the DNA molecules, copying the methylation patterns of the DNA molecules using a DNA methylation-maintenance enzyme, while isothermally amplifying the DNA molecules using a DNA polymerase with strand displacement activity, under conditions that simultaneously promote activity of the DNA methylation-maintenance enzyme and the DNA polymerase; a buffer comprising a divalent ion, deoxynucleotide triphosphates (dNTPs), primers, and S-adenosyl-methionine (SAM); and a composition comprising a DNA methylation-maintenance enzyme, a DNA polymerase with strand displacement activity, and the buffer.
Owner:EUCLID DIAGNOSTICS

Methods and compositions for diagnosing conditions associated with specific DNA methylation patterns

The present invention provides a method for identification of differentially methylated genomic CpG dinucleotide sequences associated with cancer in an individual by obtaining a biological sample comprising genomic DNA from the individual measuring the level or pattern of methylated genomic CpG dinucleotide sequences for two or more of the genomic targets in the sample, and comparing the level of methylated genomic CpG dinucleotide sequences in the sample to a reference level of methylated genomic CpG dinucleotide sequences, wherein a difference in the level or pattern of methylation of the genomic CpG dinucleotide sequences in the sample compared to the reference level identifies differentially methylated genomic CpG dinucleotide sequences associated with cancer. As disclosed herein, the methods of the invention have numerous diagnostic and prognostic applications. The methods of the invention can be combined with a miniaturized array platform that allows for a high level of assay multiplexing and scalable automation for sample handling and data processing. Also provided by the invention are genomic targets and corresponding nucleic acid probes that are useful in the methods of the invention as they enable detection of differentially methylated genomic CpG dinucleotide sequences associated with cancer, for example, adenocarcenomas and sqamous cell carcinomas of the lung.
Owner:ILLUMINA INC

Primer generation rolling circle amplification

A method of amplifying a nucleic acid is provided which comprises: generating a first nucleic acid primer from a first nucleic acid sequence; combining the first nucleic acid primer with a first polymerase and a first circular nucleic acid probe, wherein the first circular nucleic acid probe contains at least one antisense sequence to a second nucleic acid sequence and at least one antisense sequence to the first nucleic acid primer; producing at least one repeat of a sequence copy of the first circular nucleic acid probe by rolling circle amplification using the first polymerase, wherein the sequence copy contains at least the second nucleic acid sequence; generating a second nucleic acid primer from the second nucleic acid sequence; combining the second nucleic acid primer with a second polymerase and a second circular nucleic acid probe, where the second circular nucleic acid probe contains at least one antisense sequence to the second nucleic acid primer; and producing at least one repeat of a sequence copy of the second circular nucleic acid probe by rolling circle amplification using the second polymerase. The method may be employed to detect molecules of interest such as nucleic acid sequences, DNA methylation, single nucleotide polymorphisms (SNP), proteins and posttranslational modifications. Furthermore, a ribbon probe is provided that comprises a circular nucleic acid probe and a nucleic acid lock probe, wherein: the nucleic acid lock probe contains at least a cleavable linker, and the circular nucleic acid probe and the lock probe are unable to dissociate without cleaving the cleavable linker.
Owner:HITACHI CHEM CO LTD +1

Methods of copying the methylation pattern of DNA during isothermal amplification and microarrays

A method for copying the methylation patterns of molecules of genomic DNA (MGD) during isothermal amplification of the MGD comprising obtaining MGD, copying the methylation patterns of the MGD using a DNA methylation-maintenance enzyme, while isothermally amplifying the MGD using a DNA polymerase with strand displacement activity, under conditions that simultaneously promote activity of the DNA methylation-maintenance enzyme and the DNA polymerase; a method for copying the methylation patterns in double-stranded DNA molecules during isothermal amplification of the DNA molecules comprising obtaining DNA molecules, contacting the DNA molecules with transposable elements and an enzyme, which can randomly insert the transposable elements into the DNA molecules, copying the methylation patterns of the DNA molecules using a DNA methylation-maintenance enzyme, while isothermally amplifying the DNA molecules using a DNA polymerase with strand displacement activity, under conditions that simultaneously promote activity of the DNA methylation-maintenance enzyme and the DNA polymerase; a buffer comprising a divalent ion, deoxynucleotide triphosphates (dNTPs), primers, and S-adenosyl-methionine (SAM); and a composition comprising a DNA methylation-maintenance enzyme, a DNA polymerase with strand displacement activity, and the buffer.
Owner:EUCLID DIAGNOSTICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products