Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

524results about How to "Guaranteed maximum utilization" patented technology

Method and apparatus for interleaved processing of direct and indirect texture coordinates in a graphics system

InactiveUS7002591B1Efficient implementationIncrease in texture mapping hardware complexityCathode-ray tube indicators3D-image renderingPattern recognitionProcessing
A graphics system including a custom graphics and audio processor produces exciting 2D and 3D graphics and surround sound. The system includes a graphics and audio processor including a 3D graphics pipeline and an audio digital signal processor. The graphics pipeline renders and prepares images for display at least in part in response to polygon vertex attribute data and texel color data stored as a texture images in an associated memory. An efficient texturing pipeline arrangement achieves a relatively low chip-footprint by utilizing a single texture coordinate / data processing unit that interleaves the processing of logical direct and indirect texture coordinate data and a texture lookup data feedback path for “recirculating” indirect texture lookup data retrieved from a single texture retrieval unit back to the texture coordinate / data processing unit. Versatile indirect texture referencing is achieved by using the same texture coordinate / data processing unit to transform the recirculated texture lookup data into offsets that may be added to the texture coordinates of a direct texture lookup. A generalized indirect texture API function is provided that supports defining at least four indirect texture referencing operations and allows for selectively associating one of at least eight different texture images with each indirect texture defined. Retrieved indirect texture lookup data is processed as multi-bit binary data triplets of three, four, five, or eight bits. The data triplets are multiplied by a 3×2 texture coordinate offset matrix before being optionally combined with regular non-indirect coordinate data or coordinate data from a previous cycle / stage of processing. Values of the offset matrix elements are variable and may be dynamically defined for each cycle / stage using selected constants. Two additional variable matrix configurations are also defined containing element values obtained from current direct texture coordinates. Circuitry for optionally biasing and scaling retrieved texture data is also provided.
Owner:NINTENDO CO LTD

Sulfonated block copolymers, method for making same, and various uses for such block copolymers

The present invention is a, solid block copolymer comprising at least two polymer end blocks A and at least one polymer interior block B wherein each A block is a polymer block resistant to sulfonation and each B block is a polymer block susceptible to sulfonation, and wherein said A and B blocks do not contain any significant levels of olefinic unsaturation. Preferably, each A block comprising one or more segments selected from polymerized (i) para-substituted styrene monomers, (ii) ethylene, (iii) alpha olefins of 3 to 18 carbon atoms; (iv) hydrogenated 1,3-cyclodiene monomers, (v) hydrogenated monomers of conjugated dienes having a vinyl content less than 35 mol percent prior to hydrogenation, (vi) acrylic esters, (vii) methacrylic esters, and (viii) mixtures thereof; and each B block comprising segments of one or more polymerized vinyl aromatic monomers selected from (i) unsubstituted styrene monomers, (ii) ortho-substituted styrene monomers, (iii) meta-substituted styrene monomers, (iv) alpha-methylstyrene, (v) 1,1-diphenylethylene, (vi) 1,2-diphenylethylene and (vii) mixtures thereof. Also claimed are processes for making such block copolymers, and the various end uses and applications for such block copolymers.
Owner:KRATON POLYMERS US LLC

Method and apparatus for interleaved processing of direct and indirect texture coordinates in a graphics system

A graphics system including a custom graphics and audio processor produces exciting 2D and 3D graphics and surround sound. The system includes a graphics and audio processor including a 3D graphics pipeline and an audio digital signal processor. The graphics pipeline renders and prepares images for display at least in part in response to polygon vertex attribute data and texel color data stored as a texture images in an associated memory. An efficient texturing pipeline arrangement achieves a relatively low chip-footprint by utilizing a single texture coordinate / data processing unit that interleaves the processing of logical direct and indirect texture coordinate data and a texture lookup data feedback path for “recirculating” indirect texture lookup data retrieved from a single texture retrieval unit back to the texture coordinate / data processing unit. Versatile indirect texture referencing is achieved by using the same texture coordinate / data processing unit to transform the recirculated texture lookup data into offsets that may be added to the texture coordinates of a direct texture lookup. A generalized indirect texture API function is provided that supports defining at least four indirect texture referencing operations and allows for selectively associating one of at least eight different texture images with each indirect texture defined. Retrieved indirect texture lookup data is processed as multi-bit binary data triplets of three, four, five, or eight bits. The data triplets are multiplied by a 3×2 texture coordinate offset matrix before being optionally combined with regular non-indirect coordinate data or coordinate data from a previous cycle / stage of processing. Values of the offset matrix elements are variable and may be dynamically defined for each cycle / stage using selected constants. Two additional variable matrix configurations are also defined containing element values obtained from current direct texture coordinates. Circuitry for optionally biasing and scaling retrieved texture data is also provided.
Owner:NINTENDO CO LTD

Rotary servovalve and control system

An improved rotary servovalve system employs a rotary magnetic solenoid having an armature that includes at least one permanent magnet. The armature is rotatable relative to a stator formed as an electromagnet which is energizable to create alternative electromagnetic fields having opposite polarities from each other. When deenergized, the stator allows the armature to return to a neutral, null position from positions of extreme rotation in opposite angular directions due to the magnetic force of the permanent magnet of the armature. The armature is coupled to carry a movable valve element in angular rotation therewith, so that flow through the servovalve of the system can occur in alternative directions. Also, the valve element is biased toward a position in which all of the valve ports are closed when power is removed from the rotary solenoid. The control circuit employed in the rotary servovalve system expands the bandwidth of response of the solenoid actuator by compensating for frequency variations in the input command signal and in the feedback signal. This compensation is achieved utilizing a combined proportional, integral, and differential amplification circuit. Also, imbalance of fluid forces within the servovalve mechanism can be avoided by utilizing a pair of inlet orifices, a pair of outlet orifices, a pair of first fluid control orifices, and a pair of second fluid control orifices. The orifices within each pair are located on opposite sides of the valve housing from each other.
Owner:WOODWORTH RAYMOND DEXTER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products