Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

196 results about "Asynchronous network" patented technology

1) In telecommunication signaling within a network or between networks, an asynchronous signal is one that is transmitted at a different clock rate than another signal.

Novel massively parallel supercomputer

A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System-On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node may be used individually or simultaneously to work on any combination of computation or communication as required by the particular algorithm being solved or executed at any point in time. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency. In the preferred embodiment, the multiple networks include three high-speed networks for parallel algorithm message passing including a Torus, Global Tree, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. For particular classes of parallel algorithms, or parts of parallel calculations, this architecture exhibits exceptional computational performance, and may be enabled to perform calculations for new classes of parallel algorithms. Additional networks are provided for external connectivity and used for Input / Output, System Management and Configuration, and Debug and Monitoring functions. Special node packaging techniques implementing midplane and other hardware devices facilitates partitioning of the supercomputer in multiple networks for optimizing supercomputing resources.
Owner:INT BUSINESS MASCH CORP

Satellite (GPS) assisted clock apparatus, circuits, systems and processes for cellular terminals on asynchronous networks

A wireless circuit (1100, 1190) for tracking an incoming signal and for use in a network (2000) having handover from one part (Cell A) of the network to another part (Cell B). The wireless circuit includes a processor (CE 1100) responsive to the incoming signal, the processor (CE 1100) operable to generate pulse edges representing network-based receiver synchronization instances (RSIs), and a timekeeping circuitry (2420, 2430, 2450) including an oscillator circuitry (2162), the timekeeping circuitry (2420, 2430) operable to maintain a set of counter circuitries (2422-2428) including a counter circuitry (2422) operable to maintain at least one network time component based on the RSIs and another counter circuitry (2428) operable at least during handover and during loss of network coverage for maintaining at least one internal time component (NC) based on the oscillator circuitry (2162), the set of counter circuitries (2422-2428) operable to account for elapsing time substantially gaplessly and substantially without overlap between the time components during a composite of network coverage, loss of network coverage and handover, and the timekeeping circuitry further including a time generator (2450) for combining the time components from the set of counter circuitries (2422-2428) to generate an approximate absolute time (SGTB). Other electronic circuits, positioning systems, methods of operation, and processes of manufacture are also disclosed and claimed.
Owner:TEXAS INSTR INC

Massively parallel supercomputer

InactiveUS7555566B2Massive level of scalabilityUnprecedented level of scalabilityError preventionProgram synchronisationPacket communicationSupercomputer
A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System-On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node may be used individually or simultaneously to work on any combination of computation or communication as required by the particular algorithm being solved or executed at any point in time. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency. In the preferred embodiment, the multiple networks include three high-speed networks for parallel algorithm message passing including a Torus, Global Tree, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. For particular classes of parallel algorithms, or parts of parallel calculations, this architecture exhibits exceptional computational performance, and may be enabled to perform calculations for new classes of parallel algorithms. Additional networks are provided for external connectivity and used for Input/Output, System Management and Configuration, and Debug and Monitoring functions. Special node packaging techniques implementing midplane and other hardware devices facilitates partitioning of the supercomputer in multiple networks for optimizing supercomputing resources.
Owner:IBM CORP

Audio communications using devices with different capabilities

A multimedia collaboration system that integrates separate real-time and asynchronous networks—the former for real-time audio and video, and the latter for control signals and textual, graphical and other data—in a manner that is interoperable across different computer and network operating system platforms and which closely approximates the experience of face-to-face collaboration, while liberating the participants from the limitations of time and distance. These capabilities are achieved by exploiting a variety of hardware, software and networking technologies in a manner that preserves the quality and integrity of audio / video / data and other multimedia information, even after wide area transmission, and at a significantly reduced networking cost as compared to what would be required by presently known approaches. The system architecture is readily scalable to the largest enterprise network environments. It accommodates differing levels of collaborative capabilities available to individual users and permits high-quality audio and video capabilities to be readily superimposed onto existing personal computers and workstations and their interconnecting LANs and WANs. In a particular preferred embodiment, a plurality of geographically dispersed multimedia LANs are interconnected by a WAN. The demands made on the WAN are significantly reduced by employing multi-hopping techniques, including dynamically avoiding the unnecessary decompression of data at intermediate hops, and exploiting video mosaicing, cut-and-paste and audio mixing technologies so that significantly fewer wide area transmission paths are required while maintaining the high quality of the transmitted audio / video.
Owner:PRAGMATUS AV

Optical transmission network with asynchronous mapping and demapping and digital wrapper frame for the same

An optical transmission network is inherently asynchronous due to the utilization of a variable overhead ratio (V-OHR). The network architecture makes extensive use of OEO regeneration, i.e., deals with any electronic reconditioning to correct for transmission impairments, such as, for example, FEC encoding, decoding and re-encoding, signal reshaping, retiming as well as signal regeneration. The optical transmission network includes a plesiochronous clocking system with intermediate nodes designed to operate asynchronously with a single local frequency clock without complicated network synchronization schemes employing high cost clocking devices such as phase locked loop (PLL) control with crystal oscillators and other expensive system components. The asynchronous network operation provides for asynchronous remapping or remapping of any client signal utilizing any type of transmission protocol where the line side rate or frequency is always the same frequency for the payload signal and the local frequency at an intermediate node is set to a local reference clock in accordance with the payload type and its overhead ratio, i.e., the overhead ratio is varied to meet the desired difference between the line rate or frequency and the desired client signal payload rate or frequency for the particular client signal payload type.
Owner:INFINERA CORP

Satellite (GPS) assisted clock apparatus, circuits, systems and processes for cellular terminals on asynchronous networks

A wireless circuit (1100, 1190) for tracking an incoming signal and for use in a network (2000) having handover from one part (Cell A) of the network to another part (Cell B). The wireless circuit includes a processor (CE 1100) responsive to the incoming signal, the processor (CE 1100) operable to generate pulse edges representing network-based receiver synchronization instances (RSIs), and a timekeeping circuitry (2420, 2430, 2450) including an oscillator circuitry (2162), the timekeeping circuitry (2420, 2430) operable to maintain a set of counter circuitries (2422-2428) including a counter circuitry (2422) operable to maintain at least one network time component based on the RSIs and another counter circuitry (2428) operable at least during handover and during loss of network coverage for maintaining at least one internal time component (NC) based on the oscillator circuitry (2162), the set of counter circuitries (2422-2428) operable to account for elapsing time substantially gaplessly and substantially without overlap between the time components during a composite of network coverage, loss of network coverage and handover, and the timekeeping circuitry further including a time generator (2450) for combining the time components from the set of counter circuitries (2422-2428) to generate an approximate absolute time (SGTB). Other electronic circuits, positioning systems, methods of operation, and processes of manufacture are also disclosed and claimed.
Owner:TEXAS INSTR INC

Alignment of clock domains in packet networks

Disclosed is a method and apparatus for aligning clock domains over an asynchronous network between a source controlled by a first clock and a destination controlled by a second clock. The predicted delay is estimated for transmitting packets between a source and destination over the network. The time-stamped synchronization packets are sent to the destination, each time-stamped synchronization packet carries timing information based on a master clock at the source. A set of synchronization packets are received at the destination to create a set of data points, and the set of data points is weighted so that synchronization packets exhibiting a delay further from the expected delay are accorded less weight than synchronization packets exhibiting a delay closer to the expected delay. The expected delay is updated to create a current delay estimate based on the set of data points taking into account the different weighting of the data points. These steps are continually repeated on new sets of data points created from newly received synchronization packets using the current delay estimate for the expected delay. And a clock domain at the destination is continually aligned with a clock domain at the source based on the current delay estimate for packets traversing the network between the source and destination.
Owner:ZARLINK SEMICON LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products