Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1049 results about "Call setup" patented technology

Call setup time is the time from the moment VoLTE user initiates the call until the user receives notification about the called party being alerted. This call type termed as VoLTE to VoLTE, and call setup time is measured entirely from the UE, which originates the call. Typical Call Setup Time is 3 to 5 seconds.

Short message service initiated cellular mobile positioning system

PCT No. PCT/SE96/00210 Sec. 371 Date Aug. 15, 1997 Sec. 102(e) Date Aug. 15, 1997 PCT Filed Feb. 16, 1996 PCT Pub. No. WO96/25830 PCT Pub. Date Aug. 22, 1996The position of a mobile station in a cellular mobile telephone system, particularly a GSM system, is determined by carrying out a simulated call setup, i.e., the call setup is interrupted subsequent to a telephone switching center (MSC) having received a paging response containing the identity of the cell and, optionally, a timing advance. The simulated call setup is initiated by generating a modified short message signal (SMS) which is not registered in the SMS catalogue of the mobile station and which is not shown to the user of the mobile station. The SMS commands the mobile station to carry out a position determining sequence in order to establish parameters for use in establishing the position of the mobile station, for example by commanding the mobile station to connect itself to a base station contained in its neighbor list, analyze the geographical position of the base station, and subsequently send the position determining parameters to a position handler. The geographical position of the base station is analyzed from the cell identity and, if available, the timing advance, the position of the mobile station being presented graphically on a picture screen and constantly updated after each call setup. The call setups are generated by the position handler.
Owner:EUROPOLIGRAFICO

Wireless chat automatic status tracking

A technique and apparatus to provide status tracking of presence and/or location of a mobile, wireless device to a requesting entity even outside of a particular wireless system. This allows wireless service providers the ability to monitor and log changes in the status of mobile stations within and/or outside their networks. Embodiments are disclosed wherein presence and/or location information is provided to entities outside of a particular servicing wireless network using the mechanisms of call processing components of a mobile network (e.g., call setup procedures), and using standard mechanisms currently available to any appropriately conforming Mobile Switching Center (MSC) element. In one disclosed embodiment, a wireless chat tracking system is implemented which utilizes a change in mobile registration status to automatically notify a chat group system outside the wireless network of current status information activity regarding a relevant device, e.g., registration activity or inactivity timeout. In the wireless chat automatic status tracking system, a registration notification (REGNOT) message is either explicitly forwarded or copied to an external IP based application (e.g., to a mobile chat group system). The change in mobile registration is communicated via a suitable signaling link (e.g., SS7, TCP/IP, etc.) between a Home Location Register (HLR) and the chat group system. Therefore, instead of a conventionally closed system using SS7 messages, REGNOT messages are pushed out over TCP/IP connections to external applications (e.g., chat servers) to automatically notify the external system of the location of a particular user.
Owner:TELECOMM SYST INC

Method and apparatus for calculating call charge rates in a mobile telecommunication system

Rate charging rules and principles concerning mobile calls in a cellular communication system can be improved by providing the mobile station with a locator object which, at certain intervals, determines the cell in which the mobile station is currently located. Stored in the mobile station is a list of cells or areas in which a special rate is to be applied in charging for calls originating from the mobile station. The locator object monitors calls made from the mobile station and, when it detects that a call is being made, it determines whether the mobile station was in a denoted special rate area at the time that its location was most recently determined. If so, then the object informs the network that the call is entitled to the special rate. Since the last location function was executed just before call setup commenced, a special rate call is possible even if the mobile station has thereafter moved some distance into a cell applying a normal rate. Disposed in a billing center is a billing object, to which the locator object sends data indicating whether the call was initiated from a cell or area in which a special rate is applicable, as well as data identifying the particular call. The second object receives the billing records generated by the mobile switching center, which also contain call identifying data, and compares the call-specific data in those records with the data sent by the first object. In this way, the second object can identify from the billing records those calls that are entitled to a special rate, regardless of whether the mobile station has moved during call setup from the original cell into a cell where another rate, e.g. a higher rate, is applicable.
Owner:HANGER SOLUTIONS LLC +1

High-performance location management platform

An apparatus and method for rapid translation of geographic latitude and longitude into any of a number of application-specific location designations or location classifications, including street address, nearest intersection, PSAP (Public Safety Answering Point) zone, telephone rate zone, franchise zone, or other geographic, administrative, governmental or commercial division of territory. The speed of translation meets call-setup requirements for call-processing applications such as PSAP determination, and meets caller response expectations for caller queries such as the location of the nearest commercial establishment of a given type. To complete its translation process in a timely manner, a memory-stored spatial database is used to eliminate mass-storage accesses during operation, a spatial indexing scheme such as an R-tree over the spatial database is used to locate a caller within a specific rectangular area, and an optimized set of point-in-polygon algorithms is used to narrow the caller's location to a specific zone identified in the database. Additional validation processing is supplied to verify intersections or street addresses returned for a given latitude and longitude. Automatic conversion of latitude-longitude into coordinates in different map projection systems is provided. The memory-stored database is built in a compact and optimized form from a relational spatial database as required. The R-tree spatial indexing of the memory-stored database allows for substantially unlimited scalability of database size without degradation of response time. Maximum performance for database retrievals is assured by isolating the retrieval process from all updating and maintenance processes. Hot update of the in-memory database is provided without degradation of response time.
Owner:PRECISELY SOFTWARE INC +1

Seamless call switching in a dual mode environment

Methods and apparatus for providing a seamless switching of voice calls between different wireless networks are disclosed. In one illustrative example, a mobile communication device has a processor and one or more wireless transceivers coupled to the processor. The one or more wireless transceivers include a first transceiver portion operative in accordance with a first wireless network (e.g. a GSM / GPRS cellular network) and a second transceiver portion operative in accordance with a second wireless network (e.g. an 802.11 wireless network). A voice call is maintained between the mobile device and a communication terminal through call control equipment. The processor of the mobile device is operative to maintain voice communications for the voice call over a traffic channel established between the mobile device and the first wireless network using the first transceiver portion; cause a connecting call to be established with the communication terminal through the call control equipment in response to a predetermined condition, where the connecting call involves a traffic channel established between the second wireless network and the mobile device using the second transceiver portion; and after the connecting call is established, maintain voice communications for the voice call over the traffic channel established between the second wireless network and the mobile device.
Owner:MALIKIE INNOVATIONS LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products