Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1026 results about "Traffic load" patented technology

Performance computer network method

A method for a computer network includes sending a first request from a web client for resolving a first web address of a web page to a client DNS server, sending the first request from the client DNS server to a POP DNS server within a POP server network, using a probe server in the POP server network to determine traffic loads of a plurality of customer web servers, each of the customer web servers storing the web page, using the POP DNS server to determine a customer web server from the plurality of customer web servers, the customer web server having a traffic load lower than traffic loads of other customer web servers in the plurality of customer web servers, requesting the web page from the customer web server, the web page including static content represented by an embedded URL, sending the web page from the customer web server to the web client, sending a second request from the web client for resolving the URL to the client DNS server. sending the second request from the client DNS server to the POP DNS server within a POP server network, using the probe server to determine service metrics of a plurality of web caches within the POP server network, using the POP DNS server to determine a web cache from the plurality of web caches, the web cache having service metrics more appropriate for the second request than service metrics of other web caches in the plurality of web caches, requesting the static content from the web cache, sending the static content to the web client, and outputting the static content with the web client.
Owner:AKAMAI TECH INC

Apparatus and method for efficient TDMA bandwidth allocation for TCP/IP satellite-based networks

InactiveUS20050053033A1Balance traffic loadOptimize bandwidth allocationFrequency-division multiplex detailsAntenna supports/mountingsCommunications systemAloha
A communication system balances message traffic between return channel groups and within the groups, so that the user does not control the specific transmission frequency used. Uplink frequencies and bandwidths for the return channels are set by the system in a return channel control message in the broadcast signal so as to account for system and return channel group loading, and to account for user message backlogs. An initial transmission from a remote user may be made using an ALOHA-type burst signal that provides a message backlog to the control station, and is made on a frequency determined from a randomly weighted, load-based frequency selection process. The system, and not the individual users determine the frequency and channel allocations. For large backlogs or priority users, periodic bandwidth is provided. A method for balancing loads among and between groups of return channels in the communication system includes requesting return channel bandwidth in an uplink message from a remote user to a control station. The uplink message may include a both a backlog indicator and a bandwidth allocation request provided to a Network Operations Center (NOC) which can be used to set the return channel bandwidth and frequency for the remote uplink. A user message is transmitted on the designated return channel frequency using bandwidth allocated in accordance with the backlog indicator and a bandwidth allocation request so that traffic loads are maintained in balance between established return channel frequency groups, and within each return channel frequency group.
Owner:HUGHES NETWORK SYST

Dynamic bandwidth allocation and service differentiation for broadband passive optical networks

A dynamic upstream bandwidth allocation scheme is disclosed, i.e., limited sharing with traffic prediction (LSTP), to improve the bandwidth efficiency of upstream transmission over PONs. LSTP adopts the PON MAC control messages, and dynamically allocates bandwidth according to the on-line traffic load. The ONU bandwidth requirement includes the already buffered data and a prediction of the incoming data, thus reducing the frame delay and alleviating the data loss. ONUs are served by the OLT in a fixed order in LSTP to facilitate the traffic prediction. Each optical network unit (ONU) classifies its local traffic into three classes with descending priorities: expedited forwarding (EF), assured forwarding (AF), and best effort (BE). Data with higher priority replace data with lower priority when the buffer is full. In order to alleviate uncontrolled delay and unfair drop of the lower priority data, the priority-based scheduling is employed to deliver the buffered data in a particular transmission timeslot. The bandwidth allocation incorporates the service level agreements (SLAs) and the on-line traffic dynamics. The basic limited sharing with traffic prediction (LSTP) scheme is extended to serve the classified network traffic.
Owner:NEW JERSEY INSTITUTE OF TECHNOLOGY

Apparatus and method for efficient TDMA bandwidth allocation for TCP/IP satellite-based networks

InactiveUS20050030932A1Optimized bandwidth allocation schemeBalance traffic loadError preventionFrequency-division multiplex detailsCommunications systemAloha
A communication system balances message traffic between return channel groups and within the groups, so that the user does not control the specific transmission frequency used. Uplink frequencies and bandwidths for the return channels are set by the system in a return channel control message in the broadcast signal so as to account for system and return channel group loading, and to account for user message backlogs. An initial transmission from a remote user may be made using an ALOHA-type burst signal that provides a message backlog to the control station, and is made on a frequency determined from a randomly weighted, load-based frequency selection process. The system, and not the individual users determine the frequency and channel allocations. For large backlogs or priority users, periodic bandwidth is provided. A method for balancing loads among and between groups of return channels in the communication system includes requesting return channel bandwidth in an uplink message from a remote user to a control station. The uplink message may include a both a backlog indicator and a bandwidth allocation request provided to a Network Operations Center (NOC) which can be used to set the return channel bandwidth and frequency for the remote uplink. A user message is transmitted on the designated return channel frequency using bandwidth allocated in accordance with the backlog indicator and a bandwidth allocation request so that traffic loads are maintained in balance between established return channel frequency groups, and within each return channel frequency group.
Owner:HUGHES NETWORK SYST

Load balancing on shared wireless channels

The present invention provides a method and an apparatus for balancing traffic load between a plurality of users on one or more shared wireless channels, e.g., from a communication node associated with a network of a plurality of cells including a first and a second cell. The method comprises determining a first indication of traffic load for a first cell and a second indication of traffic load for a second cell on the one or more shared wireless channels and redistributing the traffic load on the one or more shared wireless channels associated with the first cell and the second cell based on the first indication of traffic load for the first cell and the second indication of traffic load for the second cell. A scheduler, e.g., at a Node B and a decision algorithm at a controller, e.g., a radio network controller may be used in a wireless telecommunication system that uses wireless channels including a shared channel, a forward access channel, a random access channel, as well as a dedicated channel to switch traffic associated with at least one user of a multiplicity of users on a shared wireless channel from a cell to another cell. In this manner, for user equipment, e.g., a Universal Mobile Telecommunications System mobile station, a decision algorithm in a Universal Mobile Telecommunications System Terrestrial Radio Access Network may direct at least a part of the traffic load on a shared channel from a source cell to a target cell by moving a cell border without affecting a traffic load on a dedicated channel.
Owner:LUCENT TECH INC

Wireless communication system with dynamic channel allocation

A plurality of base stations communicate with a plurality of mobile units. Each base station includes a base station transceiver that receives inbound information from the mobile units and transmits outbound information to the mobile units. A mobile switching center (MSC) is coupled to the base stations and communicates the inbound information and outbound information with the base stations. The base stations each include signal detectors that detect signal strength of the inbound information, co-channel information and adjacent channel information. The MSC maintains a table of signal strength per communication channel and allocates communication channels to the base stations based on the signal strength information. The inventive dynamic channel allocation includes several channel allocation algorithms that can be active at the same time. Only one of the algorithms is active at a time. The choice of the algorithm is based on current interference conditions and traffic load. The invention is implemented in the MSC and base stations of a digital cellular network using wideband technology for its air interface. While the decision-making mechanism and the channel allocation algorithms are implemented in the MSC, the protocol between the MSC and base stations is extended to support the proposed concept for dynamic channel allocation. Advantages of the invention includes improved communication and reduced interference.
Owner:WJ COMM

Intelligent network selection based on quality of service and applications over different wireless networks

A system and method for selecting a wireless network is disclosed. The method relates to selecting a wireless network from a plurality of wireless networks. A variation of the invention includes selecting a new platform from a plurality of platforms offered by the current service provider according to a service request from the wireless device. The method comprises determining a requested service associated with the wireless device, determining whether one of the plurality of wireless networks can provide the requested service, and, if one of the plurality of wireless networks can provide the requested service, choosing the one wireless network of the plurality of wireless networks. The method further involves using a variety of parameters in determining which wireless network to choose for servicing the requested service from the wireless device. These parameters include quality of services, application supported, other business factors such as roaming agreements, traffic load and cost of services. The system comprises at least one wireless network node, a wireless device, and a plurality of wireless networks communicating with each other. Either the wireless device or network node may operate to decide based on the services the wireless device user requires on which network the user will receive service from. The network assignment is accomplished to maximize the speed, cost and efficiency of transmission.
Owner:AT&T WIRELESS SERVICES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products