Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

296results about How to "Effective bandwidth" patented technology

Dynamic bandwidth allocation and service differentiation for broadband passive optical networks

A dynamic upstream bandwidth allocation scheme is disclosed, i.e., limited sharing with traffic prediction (LSTP), to improve the bandwidth efficiency of upstream transmission over PONs. LSTP adopts the PON MAC control messages, and dynamically allocates bandwidth according to the on-line traffic load. The ONU bandwidth requirement includes the already buffered data and a prediction of the incoming data, thus reducing the frame delay and alleviating the data loss. ONUs are served by the OLT in a fixed order in LSTP to facilitate the traffic prediction. Each optical network unit (ONU) classifies its local traffic into three classes with descending priorities: expedited forwarding (EF), assured forwarding (AF), and best effort (BE). Data with higher priority replace data with lower priority when the buffer is full. In order to alleviate uncontrolled delay and unfair drop of the lower priority data, the priority-based scheduling is employed to deliver the buffered data in a particular transmission timeslot. The bandwidth allocation incorporates the service level agreements (SLAs) and the on-line traffic dynamics. The basic limited sharing with traffic prediction (LSTP) scheme is extended to serve the classified network traffic.
Owner:NEW JERSEY INSTITUTE OF TECHNOLOGY

Method and system for providing a secure peer-to-peer file delivery network

A method and system for electronically delivering files over a public network is disclosed. The network includes a plurality of computers including at least one server node and multiple client nodes. In a first aspect of the present invention, the method and system enable secure and reliable peer-to-peer file sharing between two client nodes. First, a digital fingerprint is generated and associated with a file in response to the file being selected for publication on a first client node. An entry for the file is then added to a searchable index of shared files on the server node, and the fingerprint for the file is also stored on the server. In response to a second client selecting the file from the search list on the server node, the file is automatically transferred from the first client node directly to the second client node. The second client node then generates a new fingerprint for the file and compares with the new fingerprint with the fingerprint from the server node, thereby verifying the authenticity of the file and publisher. In a second aspect of the present invention, the method and system also enable subscription-based decentralized file downloads to the client nodes. First, the client nodes are allowed to subscribe with the server node to periodically receive copies of one of the files. To provide a current subscribing client node with the file, the geographically closest client node containing the file is located, and the file is transferred from the closest node directly to the current subscribing node, thereby efficiently utilizing bandwidth.
Owner:QURIO HLDG

Method and system for assuring near uniform capacity and quality of channels in cells of wireless communications systems having cellular architectures

InactiveUS6011970AMaximized cellular concept of frequency reuseReduce power outputRadio/inductive link selection arrangementsTransmission monitoringCellular architectureSignal-to-noise ratio (imaging)
A method and system for use with wireless communication systems having a cellular architecture with at least a first and a second cell. The method and system provided ensure near uniform capacity and quality of channels within the second cell via the following steps. The noise signal power in unused data channels within the second cell is monitored. When a request for channel access is received, a determination is made whether the request for channel access is either a request for handoff from the first cell into the second cell, or not. In the event that the request is not a request for handoff, a determination is made whether idle channels exist to satisfy the request for channel access. In the event of a determination either that the request for channel access is a request for handoff, or both that the request is not a request for handoff and that idle channels exist to satisfy the request, a measured received signal power of a mobile unit subscriber unit making the request is determined. One of the unused channels in the second cell is then preferentially assigned to the mobile subscriber unit where such preference in assigning is to assign a channel, provided that a signal to noise ratio calculated upon the monitored received signal power and the monitored noise signal power of the preferentially assigned noisy channel meets or exceeds a required signal to noise ratio.
Owner:NORTEL NETWORKS LTD

Packet prioritization and associated bandwidth and buffer management techniques for audio over IP

The present invention is directed to voice communication devices in which an audio stream is divided into a sequence of individual packets, each of which is routed via pathways that can vary depending on the availability of network resources. All embodiments of the invention rely on an acoustic prioritization agent that assigns a priority value to the packets. The priority value is based on factors such as whether the packet contains voice activity and the degree of acoustic similarity between this packet and adjacent packets in the sequence. A confidence level, associated with the priority value, may also be assigned. In one embodiment, network congestion is reduced by deliberately failing to transmit packets that are judged to be acoustically similar to adjacent packets; the expectation is that, under these circumstances, traditional packet loss concealment algorithms in the receiving device will construct an acceptably accurate replica of the missing packet. In another embodiment, the receiving device can reduce the number of packets stored in its jitter buffer, and therefore the latency of the speech signal, by selectively deleting one or more packets within sustained silences or non-varying speech events. In both embodiments, the ability of the system to drop appropriate packets may be enhanced by taking into account the confidence levels associated with the priority assessments.
Owner:AVAYA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products