Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2243 results about "Bitstream" patented technology

A bitstream (or bit stream), also known as binary sequence, is a sequence of bits. A bytestream is a sequence of bytes. Typically, each byte is an 8-bit quantity (octets), and so the term octet stream is sometimes used interchangeably. An octet may be encoded as a sequence of 8 bits in multiple different ways (see endianness) so there is no unique and direct translation between bytestreams and bitstreams.

Space-time processing for multiple-input, multiple-output, wireless systems

In a MIMO system the signals transmitted from the various antennas are processed so as to improve the ability of the receiver to extract them from the received signal even in the face of some correlation. More specifically the number of bit streams that is transmitted simultaneously is adjusted, e.g., reduced, depending on the level of correlation, while multiple versions of each bit stream, variously weighted, are transmitted simultaneously. The variously weighted versions are combined to produced one combined weighted signal. The receiver processes the received signals in the same manner as it would have had all the signals reaching the receive antennas been uncorrelated. The weight vectors may be determined by the forward channel transmitter using the channel properties of the forward link which are made known to the transmitter of the forward link by being transmitted from the receiver of the forward link by the transmitter of the reverse link or the weight vectors may be determined by the forward channel transmitter using the channel properties of the forward link and the determined weight vectors are made known to the transmitter of the forward link by being transmitted from the receiver of the forward link by the transmitter of the reverse link. The channel properties used to determine the weight vectors may include the channel response from the transmitter to the receiver and the covariance matrix of noise and interference measured at the receiver.

Scalable and embedded codec for speech and audio signals

InactiveUS7272556B1Improve signal reconstruction accuracySpeech analysisMultiple modesAudio signal flow
A system and method for processing of audio and speech signals is disclosed, which provide compatibility over a range of communication devices operating at different sampling frequencies and/or bit rates. The analyzer of the system divides the input signal in different portions, at least one of which carries information sufficient to provide intelligible reconstruction of the input signal. The analyzer also encodes separate information about other portions of the signal in an embedded manner, so that a smooth transition can be achieved from low bit-rate to high bit-rate applications. Accordingly, communication devices operating at different sampling rates and/or bit-rates can extract corresponding information from the output bit stream of the analyzer. In the present invention embedded information generally relates to separate parameters of the input signal, or to additional resolution in the transmission of original signal parameters. Non-linear techniques for enhancing the overall performance of the system are also disclosed. Also disclosed is a novel method of improving the quantization of signal parameters. In a specific embodiment the input signal is processed in two or more modes dependent on the state of the signal in a frame. When the signal is determined to be in a transition state, the encoder provides phase information about N sinusoids, which the decoder end uses to improve the quality of the output signal at low bit rates.

Smart Video Surveillance System Ensuring Privacy

This invention describes a video surveillance system which is composed of three key components 1—smart camera(s), 2—server(s), 3—client(s), connected through IP-networks in wired or wireless configurations. The system has been designed so as to protect the privacy of people and goods under surveillance. Smart cameras are based on JPEG 2000 compression where an analysis module allows for efficient use of security tools for the purpose of scrambling, and event detection. The analysis is also used in order to provide a better quality in regions of the interest in the scene. Compressed video streams leaving the camera(s) are scrambled and signed for the purpose of privacy and data integrity verification using JPSEC compliant methods. The same bit stream is also protected based on JPWL compliant methods for robustness to transmission errors. The operations of the smart camera are optimized in order to provide the best compromise in terms of perceived visual quality of the decoded video, versus the amount of power consumption. The smart camera(s) can be wireless in both power and communication connections. The server(s) receive(s), store(s), manage(s) and dispatch(es) the video sequences on wired and wireless channels to a variety of clients and users with different device capabilities, channel characteristics and preferences. Use of seamless scalable coding of video sequences prevents any need for transcoding operations at any point in the system.

Apparatus and method for transmitting information and apparatus and method for receiving information

An apparatus for transmitting information comprises a bitstream source for providing a bitstream representing the information, a redundancy adding encoder for generating an encoded bitstream, which is arranged to output, for a first number of input bits, a second number of output bits, the second number of output bits having at least twice as many output bits as the first number of input bits, wherein the second number of output bits includes two portions of output bits, each portion of output bits individually allowing the retrieval of information represented by the first number of input bits, and the first portion of output bits being coded based on the bitstream in a different way with respect to the second portion of output bits. The apparatus further comprises a partitioner for partitioning the second number of output bits into the two portions of output bits and a transmitter for transmitting the output bits of the first portion via a first channel and the output bits of the second portion via a second channel, the second channel being spatially different from the first channel. An inventive receiving apparatus combines the signals received via the first and second channels and uses both channel signals for channel decoding by removing redundancy. Thus, the transmitting receiving system is suitable for providing time and/or space diversity and, in the optimal case, provides a C/N value which is greater than 4.3 dB with respect to a two-channel system comprising a duplicator in the transmitter and a channel-controlled switch in the receiver.

Systems and methods for communicating spread spectrum signals using variable signal constellations

According to embodiments of the invention, a communications system includes an error correction encoder that error correction encodes a bitstream according to an error correction code. The system also includes a variable symbol generator that generates a symbol according to a selected one of a plurality of selectable signal constellations from a group of bits of the error correction encoded bitstream. The system further includes a spreader that spreads the symbol according to a spreading code, and a transmitter that transmits the spread symbol in a communications medium. Preferably, the plurality of selectable signal constellations includes at least two signal constellations of different order. In other embodiments, the error correction encoder includes a variable error-correction encoder that encodes the bitstream according to a selected error correction code of a plurality of selectable error correction codes. In still other embodiments, the spreader includes a variable spreader that spreads the symbol according to a selected spreading code of a plurality of selectable orthogonal spreading codes including at least two spreading codes of different lengths. A controller may select the error correction code used by the variable error correction encoder, the signal constellation used by the variable symbol generator, and the spreading code used by the variable spreader to provide a desired information transmission rate for the bitstream. Related methods are also described.

Optimization methods for the insertion, protection, and detection of digital watermarks in digital data

Disclosed herein are methods and systems for encoding digital watermarks into content signals. Also disclosed are systems and methods for detecting and/or verifying digital watermarks in content signals.
According to one embodiment, a system for encoding of digital watermark information includes: a window identifier for identifying a sample window in the signal; an interval calculator for determining a quantization interval of the sample window; and a sampler for normalizing the sample window to provide normalized samples.
According to another embodiment, a system for pre-analyzing a digital signal for encoding at least one digital watermark using a digital filter is disclosed.
According to another embodiment, a method for pre-analyzing a digital signal for encoding digital watermarks comprises: (1) providing a digital signal; (2) providing a digital filter to be applied to the digital signal; and (3) identifying an area of the digital signal that will be affected by the digital filter based on at least one measurable difference between the digital signal and a counterpart of the digital signal selected from the group consisting of the digital signal as transmitted, the digital signal as stored in a medium, and the digital signal as played backed.
According to another embodiment, a method for encoding a watermark in a content signal includes the steps of (1) splitting a watermark bit stream; and (2) encoding at least half of the watermark bit stream in the content signal using inverted instances of the watermark bit stream.
Other methods and systems for encoding/decoding digital watermarks are also disclosed.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products