Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4093results about "Polarisation/directional diversity" patented technology

Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system

Channel state information (CSI) can be used by a communications system to precondition transmissions between transmitter units and receiver units. In one aspect of the invention, disjoint sub-channel sets are assigned to transmit antennas located at a transmitter unit. Pilot symbols are generated and transmitted on a subset of the disjoint sub-channels. Upon receipt of the transmitted pilot symbols, the receiver units determine the CSI for the disjoint sub-channels that carried pilot symbols. These CSI values are reported to the transmitter unit, which will use these CSI values to generate CSI estimates for the disjoint sub-channels that did not carry pilot symbols. The amount of information necessary to report CSI on the reverse link can be further minimized through compression techniques and resource allocation techniques.
Owner:QUALCOMM INC

Method and apparatus for optimization of wireless multipoint electromagnetic communication networks

Exploiting the substantive reciprocity of internode channel responses through dynamic, adaptive modification of receive and transmit weights, enables locally enabled global optimization of a multipoint, wireless electromagnetic communications network of communication nodes. Each diversity-channel-capable node uses computationally efficient exploitation of pilot tone data and diversity-adaptive signal processing of the weightings and the signal to further convey optimization and channel information which promote local and thereby network-global efficiency. The preferred embodiment performs complex digital signal manipulation that includes a linear combining and linear distribution of the transmit and receive weights, the generation of piloting signals containing origination and destination node information, as well as interference-avoiding pseudorandom delay timing, and both symbol and multitione encoding, to gain the benefit of substantive orthogonality at the physical level without requiring actual substantive orthogonality at the physical level.
Owner:COMCAST CABLE COMM LLC

Method and apparatus for optimization of wireless multipoint electromagnetic communication networks

Exploiting the substantive reciprocity of internode channel responses through dynamic, adaptive modification of receive and transmit weights, enables locally enabled global optimization of a multipoint, wireless electromagnetic communications network of communication nodes. Each diversity-channel-capable node uses computationally efficient exploitation of pilot tone data and diversity-adaptive signal processing of the weightings and the signal to further convey optimization and channel information which promote local and thereby network-global efficiency. The preferred embodiment performs complex digital signal manipulation that includes a linear combining and linear distribution of the transmit and receive weights, the generation of piloting signals containing origination and destination node information, as well as interference-avoiding pseudorandom delay timing, and both symbol and multitone encoding, to gain the benefit of substantive orthogonality at the physical level without requiring actual substantive orthogonality at the physical level.
Owner:COMCAST CABLE COMM LLC

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Power transmission network

A network for power transmission to a receiver that converts the power into current includes a first node for transmitting power wirelessly in a first area. The first area has a minimum electric or magnetic field strength. The network includes a second node for transmitting power wirelessly in a second area. The second area has a minimum electric or magnetic field strength and overlaps the first area to define an overlap area. In another embodiment, the network includes a source in communication with the first and second nodes which provides power to them. Also disclosed are methods for power transmission to a receiver that converts the power into current.
Owner:POWERCAST

Wireless power transmission

Disclosed is a system for power transmission. The system includes a receiver having a receiver antenna. An RF power transmitter includes a transmitter antenna. The RF power transmitter transmits RF power. The RF power includes multiple polarization components. The receiver converts the RF power to direct current. Also disclosed is an antenna for an RF power transmission system. The antenna includes at least two antenna elements. Alternating the radiation between the at least two antenna elements produces a power transmission having components in two polarizations. Additionally disclosed is a transmitter, a receiver and a method for power transmission.
Owner:POWERCAST

Method and apparatus for preamble training in a multiple antenna communication system

Methods and apparatus are provided for communicating data in a multiple antenna communication system having N transmit antennas. According to one aspect of the invention, a header format includes a legacy preamble having at least one legacy long training field and an extended portion having at least N additional long training fields on each of the N transmit antennas. The N additional long training fields may be tone interleaved across the N transmit antennas and are used for MIMO channel estimation. The extended portion may include a short training field for power estimation. The short training field may be tone interleaved across the N transmit antennas and have an extended duration to support beam steering.
Owner:AVAGO TECH INT SALES PTE LTD

System and method for distributed input distributed output wireless communications

A system and method are described for compensating for frequency and phase offsets in a multiple antenna system (MAS) with multi-user (MU) transmissions (“MU-MAS”). For example, a method according to one embodiment of the invention comprises: transmitting a training signal from each antenna of a base station to one or each of a plurality of wireless client devices, one or each of the client devices analyzing each training signal to generate frequency offset compensation data, and receiving the frequency offset compensation data at the base station; computing MU-MAS precoder weights based on the frequency offset compensation data to pre-cancel the frequency offset at the transmitter; precoding training signal using the MU-MAS precoder weights to generate precoded training signals for each antenna of the base station; transmitting the precoded training signal from each antenna of a base station to each of a plurality of wireless client devices, each of the client devices analyzing each training signal to generate channel characterization data, and receiving the channel characterization data at the base station; computing a plurality of MU-MAS precoder weights based on the channel characterization data, the MU-MAS precoder weights calculated to pre-cancel frequency and phase offset and / or inter-user interference; precoding data using the MU-MAS precoder weights to generate precoded data signals for each antenna of the base station; and transmitting the precoded data signals through each antenna of the base station to each respective client device.
Owner:REARDEN LLC

Otfs methods of data channel characterization and uses thereof

Fiber, cable, and wireless data channels are typically impaired by reflectors and other imperfections, producing a channel state with echoes and frequency shifts in data waveforms. Here, methods of using OTFS pilot symbol waveform bursts to automatically produce a detailed 2D model of the channel state are presented. This 2D channel state can then be used to optimize data transmission. For wireless data channels, an even more detailed 2D model of channel state can be produced by using polarization and multiple antennas in the process. Once 2D channel states are known, the system turns imperfect data channels from a liability to an advantage by using channel imperfections to boost data transmission rates. The methods can be used to improve legacy data transmission modes in multiple types of media, and are particularly useful for producing new types of robust and high capacity wireless communications using non-legacy OTFS data transmission methods.
Owner:COHERE TECH

Intelligent backhaul radio and antenna system

A intelligent backhaul radio have an advanced antenna system for use in PTP or PMP topologies. The antenna system provides a significant diversity benefit. Antenna configurations are disclosed that provide for increased transmitter to receiver isolation, adaptive polarization and MIMO transmission equalization. Adaptive optimization of transmission parameters based upon side information provided in the form of metric feedback from a far end receiver utilizing the antenna system is also disclosed.
Owner:COMS IP HLDG LLC

Space-time processing for multiple-input, multiple-output, wireless systems

In a MIMO system the signals transmitted from the various antennas are processed so as to improve the ability of the receiver to extract them from the received signal even in the face of some correlation. More specifically the number of bit streams that is transmitted simultaneously is adjusted, e.g., reduced, depending on the level of correlation, while multiple versions of each bit stream, variously weighted, are transmitted simultaneously. The variously weighted versions are combined to produced one combined weighted signal. The receiver processes the received signals in the same manner as it would have had all the signals reaching the receive antennas been uncorrelated. The weight vectors may be determined by the forward channel transmitter using the channel properties of the forward link which are made known to the transmitter of the forward link by being transmitted from the receiver of the forward link by the transmitter of the reverse link or the weight vectors may be determined by the forward channel transmitter using the channel properties of the forward link and the determined weight vectors are made known to the transmitter of the forward link by being transmitted from the receiver of the forward link by the transmitter of the reverse link. The channel properties used to determine the weight vectors may include the channel response from the transmitter to the receiver and the covariance matrix of noise and interference measured at the receiver.
Owner:ALCATEL-LUCENT USA INC

Full Duplex Wireless Transmission with Self-Interference Cancellation

Two-way (full-duplex) wireless communications. Various embodiments measure interference channels and provide for interference cancellation in both analog and digital domains to mitigate self-interference. The system supports multiple clients wherein new clients can join the network asynchronously, and also supports Multiple-Input Multiple-Output (MIMO) antennas.
Owner:KHANDANI AMIR KEYVAN

Multi-beam antenna system for cellular radio base stations

A base transceiver station operating a sectorized cell of a cellular radio system operates a plurality of narrow uplink main receive beams, and one or a plurality of uplink diversity received beams. A scanning means scans each of the uplink main receive beams to locate a communications channel on the main uplink beams. A diversity receiver receives a diverse beam signal from the diverse beam(s), which is compared with a beam signal received from a main uplink beam, and the main beam signal from the main beam, or a diverse beam signal from the diversity antenna is selected, depending on the comparative signal to noise ratio and signal strength of the main beam signal and diversity beam signal.
Owner:MICROSOFT TECH LICENSING LLC

Pre-coded diversity forward channel transmission system for wireless communications systems supporting multiple MIMO transmission modes

A wireless communications system supporting multiple MIMO transmission modes supporting both diversity and directional transmissions under a plurality of different transmission modes comprises a plurality of transmit and receive antenna elements where the transmit antenna elements are arranged to provide polarization diversity. The transmitting station derives actual knowledge of the forward channel by feeding back certain information such as a preferred beam index and a channel quality indicator figure of merit for that beam from the receiving station to the transmitting station along a reverse channel. The receiving station knows the beam weights used by the transmitting station. The transmitting station applies the fed back information to transmit user data intended for the receiving station in the optimal fashion, such as along the preferred beam and at a time when forward channel conditions are satisfactory. The system provides robust single or multiple stream diversity transmission, together with the option of single user or multi-user beamforming to allow on-the-fly trade-offs between coverage gain and capacity in a wireless telecommunications system.
Owner:TENXC WIRELESS

Circular superdirective receive antenna arrays

Systems and methods are described for circular superdirective receive antenna arrays. A method includes calculating an minimum array efficiency of the superdirective circular receive array, calculating a maximum superdirective gain of the superdirective circular receive array, determining an amplitude weight or a phase weight for an array element in the superdirective circular receive array based on the minimum array efficiency and the maximum superdirective gain, and determining number of array elements in the superdirective circular receive array and a radius of the superdirective circular receive array.
Owner:CODAR OCEAN SENSORS LTD

Method and apparatus for providing closed-loop transmit precoding

A method for providing closed-loop transmit precoding between a transmitter and a receiver, includes defining a codebook that includes a set of unitary rotation matrices. The receiver determines which preceding rotation matrix from the codebook should be used for each sub-carrier that has been received. The receiver sends an index to the transmitter, where the transmitter reconstructs the precoding rotation matrix using the index, and precodes the symbols to be transmitted using the preceding rotation matrix. An apparatus that employs this closed-loop technique is also described.
Owner:TEXAS INSTR INC

Power transmission network

A network for power transmission to a receiver that converts the power into current includes a first node for transmitting power wirelessly in a first area. The first area has a minimum electric or magnetic field strength. The network includes a second node for transmitting power wirelessly in a second area. The second area has a minimum electric or magnetic field strength and overlaps the first area to define an overlap area. In another embodiment, the network includes a source in communication with the first and second nodes which provides power to them. Also disclosed are methods for power transmission to a receiver that converts the power into current.
Owner:POWERCAST

Distributed antenna system for MIMO communications

A method of deploying a distributed antenna system (DAS) is provided. The method comprises outputting first and second signals from a multiple-input and multiple-output base station (MIMO BTS) and coupling a master unit to the MIMO BTS. The method further comprises coupling first and second remote units to the master unit, the first remote unit communicating the first signal over a first air interface located within the environment at a first location, the second remote unit communicating the second signal over a second air interface within the environment at a second location. The first and second remote units are arranged at the first and second locations within the environment and configured to provide signal coverage of both the first signal and the second signal at a third location in the environment to provide the capacity for MIMO communications through the system at the third location.
Owner:ANDREW WIRELESS SYST GMBH

Communication system with a beamformed control channel and method of system control

To reduce interference in a communication system (10), a communication unit (42-50) is arranged to initiate establishment of a radio frequency communication with a base station (26-38) by transmitting a system access request on a dedicated, wide area control channel. Upon receipt of the system access request, a base station (32) of the communication system of FIG. 1 responds by forming a narrowbeam control channel to the communication unit and transmitting system control information to the communication unit on the narrowbeam control channel, the system control information transmitted from the array of antenna elements and arranged to identify a narrowbeam communication resource for use in the radio communication. The communication unit (42-50), upon receiving the system control information, then configures itself to utilise the narrowbeam communication resource for the radio communication.
Owner:MOTOROLA INC

Method and system for controlling medium access in a wireless network

A method and system are disclosed that can be applied to achieve high-throughput in a WLAN. Central to the present invention is the use of an SDMA compatible multi-beam antenna system by a WLAN access point. A system based on two types of antennas-dynamic beam forming and fixed beam antennas—is described. A mechanism and protocol are described that implement simultaneous transmissions with respect to an SDMA compatible access point and thereby improve spectral efficiency, and by extension achieve higher throughput. Based on the recognition that current WLAN MAC has major limitations in throughput, certain MAC extensions (that can be applied independently of SDMA) are described. Also disclosed are power-saving and power control techniques that improve battery performance and contribute to a reduction in station size, and a means of reducing channel interference. The present invention also deals with the problem of backward compatibility with conventional devices that implement the protocol that is a subset covered by the present invention.
Owner:SOVEREIGN PEAK VENTURES LLC

Apparatus and method for transmitting/receiving data in a mobile communication system using multiple antennas

An apparatus and method for transmitting / receiving data in a mobile communication system using multiple antennas are provided. A receiver estimates a fading channel of received data, selects a weight set relative to a maximum data transmission rate from at least one weight set with elements of a plurality of orthogonal weight vectors, and transmits feedback information including the selected weight set and channel-by-channel state information to a transmitter. The transmitter demultiplexes data to be transmitted on a basis of the feedback information into at least one sub-data stream, multiplies each sub-data stream by an associated weight, and transmits the data.
Owner:SAMSUNG ELECTRONICS CO LTD

Apparatus and method for estimating a plurality of channels

An apparatus for estimating a plurality of channels from a plurality of distinct transmitting points, wherein an input signal includes a super position of signals based on a first pilot sequence transmittable from a first transmitting point and on a second pilot sequence transmittable from a second transmitting point, the first pilot sequence and the second pilot sequence having a phase shift to each other, comprises a transformer, which is operative to translate phase shifts between the first and the second pilot sequence into a delay, so that a first group of a set of discrete values of the transformed signal includes channel information of a first channel and that a second group of a set of discrete values includes channel information of a second channel, a selector for selecting the first group from the set of discrete values and for selecting the second group from the set of discrete values to obtain selected groups, and means for determining channel information for the plurality of channels based on the selected groups. The selection of groups at the output of the transformer for obtaining channel information for the channel allows the construction of a simplified receiver.
Owner:NTT DOCOMO INC

Wireless transmission with channel state perturbation

Generating a channel codebook by identifying a subset of antenna configurations from a plurality of antenna configurations of an antenna associated with a transmitter by: transmitting a sequence of symbols from the transmitter to a receiver using the plurality of antenna configurations, wherein each antenna configuration provides a unique transmission characteristic to the receiver; receiving feedback from the receiver that identifies the subset of antenna configurations; and, generating channel codebook entries corresponding to the subset of antenna configurations; and, transmitting data from the transmitter to the receiver using the channel codebook.
Owner:KHANDANI AMIR KEYVAN

Radio communication system using adaptive array antenna

A radio communication system and method having an array antenna and a weighting arrangement that provides a downlink array weight for a downlink on the basis of information about bearings of a plurality of incoming signals received through a plurality of uplinks, and transmission power control information about transmission data to be transmitted through a downlink.
Owner:HITACHI LTD

MIMO wireless communication system

InactiveUS20020085643A1Spatial diversity is avoidedIncrease link capacitySpatial transmit diversityPolarisation/directional diversityPolarization diversityCommunications system
Previous MIMO systems have used spatially diverse antenna elements in order not to reduce the number of orthogonal channels that can be realised. The present invention recognises that this leads to large antenna sizes, as compared to multiple beam antenna systems which use closely spaced antenna elements. In order to provide a compact antenna unit, while still allowing a MIMO system to be exploited, the present invention recognizes that polarization diversity only can be used in a MIMO system without the need for spatially diverse antenna elements. Closely spaced antenna elements are used and this enables a compact MIMO antenna unit to be provided. In addition, such MIMO systems with polarization diversity but no spatial diversity can advantageously be used in line of sight situations and also combined with multi-beam antenna systems to further increase capacity.
Owner:APPLE INC

Method and apparatus of codebook-based single-user closed-loop transmit beamforming (SU-CLTB) for OFDM wireless systems

A method includes broadcasting, at a transmitter, messages comprising antenna configuration, antenna spacing and a number of antenna of the transmitter and reference signals; generating, at a receiver, a codebook comprising a plurality of antenna beams based on the broadcasted messages; receiving, at the receiver, the broadcasted reference signals; selecting, at the receiver, an antenna beam among the plurality of antenna beams within the codebook in dependence upon a predetermined performance criteria of a data communication system and in dependence upon the broadcasted reference signals; feedbacking to the transmitter, at the receiver, information comprising the antenna beam selected by the receiver; optimizing, at the transmitter, a beamforming process by utilizing the feedback information from the receiver; transmitting, at the transmitter, data signals by utilizing the optimized beamforming process; and receiving and processing, at the receiver, the data signals in dependence upon the selected antenna beams within the codebook.
Owner:SAMSUNG ELECTRONICS CO LTD

Preamble design for multiple input-multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system

One or more preambles are inserted into frames of Orthogonal Frequency Multiplexing (OFDM)-Multiple Input, Multiple Output (MIMO) signals. The preamble is received by the antennas of a receiver, decoded and compared to known values to provide synchronization, framing, channels estimation, offsets and other corrections to the transmitted signal.
Owner:APPLE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products