Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

12800 results about "Resource allocation" patented technology

In economics, resource allocation is the assignment of available resources to various uses. In the context of an entire economy, resources can be allocated by various means, such as markets or planning.

Method and apparatus for resource allocation when schedule changes are incorporated in real time

A plurality of resources, typically service operatives, are allocated to a plurality of tasks by a method in which initial information relating to the tasks to be allocated and the resources available to perform the tasks is provided. An initial series of schedules is first generated allocating resources to the tasks, and then modifying the individual schedule of at least one resource in response to updated information. Changes to individual schedules may be made in response to such updated information independently of the schedule generation. The initial, series of schedules may be generated in a two-stage process in which a rule-based system allocates tasks selected as being difficult to allocate (e.g., because they are linked to other tasks). then a stochastic (non-systematic) search system compiles the rest of the schedule. Periodically, the stochastic system may be interrupted to allow a further rule-based system to analyze the schedules created thus far, and fix the best ones in the schedule, so that the stochastic system can then concentrate on improving the remaining schedules. In order to allow the system to handle rapid changes in the requirements for tasks and the resources, on a scale faster than the time required to generate the schedules, a schedule modification system is arranged to make changes in the short term in between schedule updates delivered by the schedule generation system.
Owner:TRIMBLE MRM

Method and apparatus for controlling transmissions of a communications systems

In some aspects, each cell in the communications system can be designed to operate in accordance with a set of back-off factors that identify the reductions in peak transmit power levels for the channels associated with the back-off factors. The back-off factors are defined to provide the required power to a large percentage of the users while reducing the amount of interference. In some other aspects, the cells operate using an adaptive reuse scheme that allows the cells to efficiently allocate and reallocate the system resources to reflect changes in the system. A reuse scheme is initially defined and resources are allocated to the cells. During operation, changes in the operating conditions of the system are detected and the reuse scheme is redefined as necessary based on the detected changes. For example, the loading conditions of the cells can be detected, and the resources can be reallocated and/or the reuse scheme can be redefined. In yet other aspects, techniques are provided to efficiency schedule data transmissions and to assign channels to users. Data transmissions can be scheduled based on user priorities, some fairness criteria, system requirements, and other factors. Users are assigned to available channels based on a number of channel assignment schemes. Channel metrics are also provided, which can be used to prioritize users and for channel assignments.
Owner:QUALCOMM INC

Virtual data center that allocates and manages system resources across multiple nodes

A virtualization infrastructure that allows multiple guest partitions to run within a host hardware partition. The host system is divided into distinct logical or virtual partitions and special infrastructure partitions are implemented to control resource management and to control physical I / O device drivers that are, in turn, used by operating systems in other distinct logical or virtual guest partitions. Host hardware resource management runs as a tracking application in a resource management “ultravisor” partition, while host resource management decisions are performed in a higher level command partition based on policies maintained in a separate operations partition. The conventional hypervisor is reduced to a context switching and containment element (monitor) for the respective partitions, while the system resource management functionality is implemented in the ultravisor partition. The ultravisor partition maintains the master in-memory database of the hardware resource allocations and serves a command channel to accept transactional requests for assignment of resources to partitions. It also provides individual read-only views of individual partitions to the associated partition monitors. Host hardware I / O management is implemented in special redundant I / O partitions. Operating systems in other logical or virtual partitions communicate with the I / O partitions via memory channels established by the ultravisor partition. The guest operating systems in the respective logical or virtual partitions are modified to access monitors that implement a system call interface through which the ultravisor, I / O, and any other special infrastructure partitions may initiate communications with each other and with the respective guest partitions. The guest operating systems are modified so that they do not attempt to use the “broken” instructions in the x86 system that complete virtualization systems must resolve by inserting traps. System resources are separated into zones that are managed by a separate partition containing resource management policies that may be implemented across nodes to implement a virtual data center.
Owner:UNISYS CORP

Computer system para-virtualization using a hypervisor that is implemented in a partition of the host system

A virtualization infrastructure that allows multiple guest partitions to run within a host hardware partition. The host system is divided into distinct logical or virtual partitions and special infrastructure partitions are implemented to control resource management and to control physical I / O device drivers that are, in turn, used by operating systems in other distinct logical or virtual guest partitions. Host hardware resource management runs as a tracking application in a resource management “ultravisor” partition, while host resource management decisions are performed in a higher level command partition based on policies maintained in a separate operations partition. The conventional hypervisor is reduced to a context switching and containment element (monitor) for the respective partitions, while the system resource management functionality is implemented in the ultravisor partition. The ultravisor partition maintains the master in-memory database of the hardware resource allocations and serves a command channel to accept transactional requests for assignment of resources to partitions. It also provides individual read-only views of individual partitions to the associated partition monitors. Host hardware I / O management is implemented in special redundant I / O partitions. Operating systems in other logical or virtual partitions communicate with the I / O partitions via memory channels established by the ultravisor partition. The guest operating systems in the respective logical or virtual partitions are modified to access monitors that implement a system call interface through which the ultravisor, I / O, and any other special infrastructure partitions may initiate communications with each other and with the respective guest partitions. The guest operating systems are modified so that they do not attempt to use the “broken” instructions in the x86 system that complete virtualization systems must resolve by inserting traps.
Owner:UNISYS CORP

Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PTMP) transmission system architecture

A packet-centric wireless point to multi-point telecommunications system includes: a wireless base station communicating via a packet-centric protocol to a first data network; one or more host workstations communicating via the packet-centric protocol to the first data network; one or more subscriber customer premise equipment (CPE) stations coupled with the wireless base station over a shared bandwidth via the packet-centric protocol over a wireless medium; and one or more subscriber workstations coupled via the packet-centric protocol to each of the subscriber CPE stations over a second network. The packet-centric protocol can be transmission control protocol/internet protocol (TCP/IP). The packet-centric protocol can be a user datagram protocol/internet protocol (UDP/IP). The system can include a resource allocation means for allocating shared bandwidth among the subscriber CPE stations. The resource allocation is performed to optimize end-user quality of service (QoS). The wireless communication medium can include at least one of: a radio frequency (RF) communications medium; a cable communications medium; and a satellite communications medium. The wireless communication medium can further include a telecommunications access method including at least one of: a time division multiple access (TDMA) access method; a time division multiple access/time division duplex (TDMA/TDD) access method; a code division multiple access (CDMA) access method; and a frequency division multiple access (FDMA) access method.
The first data network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN). The second network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN).
Owner:INTELLECTUAL VENTURES I LLC

Para-virtualized computer system with I/0 server partitions that map physical host hardware for access by guest partitions

A virtualization infrastructure that allows multiple guest partitions to run within a host hardware partition. The host system is divided into distinct logical or virtual partitions and special infrastructure partitions are implemented to control resource management and to control physical I/O device drivers that are, in turn, used by operating systems in other distinct logical or virtual guest partitions. Host hardware resource management runs as a tracking application in a resource management “ultravisor” partition, while host resource management decisions are performed in a higher level command partition based on policies maintained in a separate operations partition. The conventional hypervisor is reduced to a context switching and containment element (monitor) for the respective partitions, while the system resource management functionality is implemented in the ultravisor partition. The ultravisor partition maintains the master in-memory database of the hardware resource allocations and serves a command channel to accept transactional requests for assignment of resources to partitions. It also provides individual read-only views of individual partitions to the associated partition monitors. Host hardware I/O management is implemented in special redundant I/O partitions. Operating systems in other logical or virtual partitions communicate with the I/O partitions via memory channels established by the ultravisor partition. The guest operating systems in the respective logical or virtual partitions are modified to access monitors that implement a system call interface through which the ultravisor, I/O, and any other special infrastructure partitions may initiate communications with each other and with the respective guest partitions. The guest operating systems are modified so that they do not attempt to use the “broken” instructions in the x86 system that complete virtualization systems must resolve by inserting traps.
Owner:UNISYS CORP

Apparatus and methods for dynamic bandwidth allocation

A system capable of dynamically reserving bandwidth and adjusting bandwidth reservations for active sessions of data communication in a data communications device is provided. The system generally separates the operation of bandwidth allocation and adjustment from the operation of data transport through the device, thereby allowing bandwidth reservations and adjustments to be made without disturbing sessions of data communication that are actively being transported through the device. The system can accept requests to allocate or reserve bandwidth in a data communications device using bandwidth reservation protocols such as RSVP. The reservation requests create sender state data that can be used to compute resource allocation data. The resource allocation data can be used to label data storage locations in a data storage mechanism according to the required bandwidth reservations. A data scheduling apparatus, which is ignorant of particular sessions and specific amounts of reserved bandwidth, examines data and deposits data into data storage locations having a label corresponding to a session identification specified in the data, if any. If an unknown or no session identification is specified in the data, the data scheduler deposits data into a data storage location that is unlabeled or that has an unreserved label. Thus session bandwidth is determined by the percentage of labeled data storage locations for the session. Changes in bandwidth reservations are reflected in the separate operation of alterations made in the data storage labeling scheme, and do not affect the data scheduler, or data dequeuing mechanisms, thus allowing data sessions to continue without interruption during bandwidth adjustments.
Owner:CISCO TECH INC

Uplink resource allocation to control intercell interference in a wireless communication system

Embodiments of the present invention exploit the reciprocity of radio channels in TDD, and longer-term correlation between average uplink and downlink path losses in FDD wireless communication systems to enable distributed schedulers in an enhanced uplink system to allocate uplink transmission resources while preemptively managing intercell interference levels. Each cell's base station transmits a downlink reference signal at a known transmission power level. A mobile station monitors the received signal strength of the downlink reference signals from multiple base stations. The transmitted and received signal strength levels can be used by the mobile station to estimate the amount of intercell interference that the mobile station's uplink transmissions cause, and the mobile station's uplink transmission parameters are adjusted accordingly. In further embodiments, the received reference signal power levels, or values derived therefrom, are transmitted by the mobile station to its serving base station, where a scheduling algorithm uses the information to adjust one or more transmission parameters relating to a grant of uplink transmission resources to the UE, thereby controlling the intercell interference generated by the mobile station's uplink transmissions.
Owner:SONY CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products