Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2020 results about "Bandwidth allocation" patented technology

Bandwidth allocation is the process of assigning radio frequencies to different applications. The radio spectrum is a finite resource, which means there is great need for an effective allocation process. In the United States, the Federal Communications Commission or FCC has the responsibility of allocating discrete portions of the spectrum, or bands, to various industries. The FCC did this recently, when it shifted the location of television broadcasting on the spectrum in order to open up more space for mobile data. Different bands of spectrum are able to transmit more data than others, and some bands of the spectrum transmit a clearer signal than others. Bands that are particularly fast or that have long range are of critical importance for companies that intend to operate a business involving wireless communications.

Apparatus and methods for dynamic bandwidth allocation

A system capable of dynamically reserving bandwidth and adjusting bandwidth reservations for active sessions of data communication in a data communications device is provided. The system generally separates the operation of bandwidth allocation and adjustment from the operation of data transport through the device, thereby allowing bandwidth reservations and adjustments to be made without disturbing sessions of data communication that are actively being transported through the device. The system can accept requests to allocate or reserve bandwidth in a data communications device using bandwidth reservation protocols such as RSVP. The reservation requests create sender state data that can be used to compute resource allocation data. The resource allocation data can be used to label data storage locations in a data storage mechanism according to the required bandwidth reservations. A data scheduling apparatus, which is ignorant of particular sessions and specific amounts of reserved bandwidth, examines data and deposits data into data storage locations having a label corresponding to a session identification specified in the data, if any. If an unknown or no session identification is specified in the data, the data scheduler deposits data into a data storage location that is unlabeled or that has an unreserved label. Thus session bandwidth is determined by the percentage of labeled data storage locations for the session. Changes in bandwidth reservations are reflected in the separate operation of alterations made in the data storage labeling scheme, and do not affect the data scheduler, or data dequeuing mechanisms, thus allowing data sessions to continue without interruption during bandwidth adjustments.
Owner:CISCO TECH INC

Dynamic bandwidth allocation

InactiveUS7069577B2Prevents untoward spectral effectMore balancedError preventionModulated-carrier systemsFiberModem device
The communication system includes a hybride fiber / coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber / coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber / coax distribution network. The head end includes head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information. The system further includes service units, each service unit operatively connected to the hybrid fiber / coax distribution network for upstream transmission of telephony and control data in the second frequency bandwidth and for receipt of the downstream control data and telephony in the first frequency bandwidth. Each service unit includes a service unit multicarrier modem for modulating at least the upstream telephony information on at least one carrier orthogonal at the head end terminal to another carrier in the second frequency bandwidth and for demodulating at least downstream telephony information modulated on at least a band of a plurality of orthogonal carriers in the first frequency bandwidth. Each service unit also includes a controller operatively connected to the service unit multicarrier modem for controlling the modulation of and demodulation performed by the service unit multicarrier modem. A method of monitoring communication channels, a distributed loop method for adjusting transmission characteristics to allow for transmission of data in a multi-point to point communication system, a polyphase filter technique for providing ingress protection and a scanning method for identifying frequency bands to be used for transmission by service units are also included. Also provided is a method and apparatus for performing a Fast Fourier Transform (FFT). In one embodiment, a scalable FFT system is built using a novel dual-radix butterfly core.
Owner:HTC CORP

Apparatus and method for efficient TDMA bandwidth allocation for TCP/IP satellite-based networks

InactiveUS20050053033A1Balance traffic loadOptimize bandwidth allocationFrequency-division multiplex detailsAntenna supports/mountingsCommunications systemAloha
A communication system balances message traffic between return channel groups and within the groups, so that the user does not control the specific transmission frequency used. Uplink frequencies and bandwidths for the return channels are set by the system in a return channel control message in the broadcast signal so as to account for system and return channel group loading, and to account for user message backlogs. An initial transmission from a remote user may be made using an ALOHA-type burst signal that provides a message backlog to the control station, and is made on a frequency determined from a randomly weighted, load-based frequency selection process. The system, and not the individual users determine the frequency and channel allocations. For large backlogs or priority users, periodic bandwidth is provided. A method for balancing loads among and between groups of return channels in the communication system includes requesting return channel bandwidth in an uplink message from a remote user to a control station. The uplink message may include a both a backlog indicator and a bandwidth allocation request provided to a Network Operations Center (NOC) which can be used to set the return channel bandwidth and frequency for the remote uplink. A user message is transmitted on the designated return channel frequency using bandwidth allocated in accordance with the backlog indicator and a bandwidth allocation request so that traffic loads are maintained in balance between established return channel frequency groups, and within each return channel frequency group.
Owner:HUGHES NETWORK SYST

Dynamic bandwidth allocation and service differentiation for broadband passive optical networks

A dynamic upstream bandwidth allocation scheme is disclosed, i.e., limited sharing with traffic prediction (LSTP), to improve the bandwidth efficiency of upstream transmission over PONs. LSTP adopts the PON MAC control messages, and dynamically allocates bandwidth according to the on-line traffic load. The ONU bandwidth requirement includes the already buffered data and a prediction of the incoming data, thus reducing the frame delay and alleviating the data loss. ONUs are served by the OLT in a fixed order in LSTP to facilitate the traffic prediction. Each optical network unit (ONU) classifies its local traffic into three classes with descending priorities: expedited forwarding (EF), assured forwarding (AF), and best effort (BE). Data with higher priority replace data with lower priority when the buffer is full. In order to alleviate uncontrolled delay and unfair drop of the lower priority data, the priority-based scheduling is employed to deliver the buffered data in a particular transmission timeslot. The bandwidth allocation incorporates the service level agreements (SLAs) and the on-line traffic dynamics. The basic limited sharing with traffic prediction (LSTP) scheme is extended to serve the classified network traffic.
Owner:NEW JERSEY INSTITUTE OF TECHNOLOGY

Apparatus and method for efficient TDMA bandwidth allocation for TCP/IP satellite-based networks

InactiveUS20050030932A1Optimized bandwidth allocation schemeBalance traffic loadError preventionFrequency-division multiplex detailsCommunications systemAloha
A communication system balances message traffic between return channel groups and within the groups, so that the user does not control the specific transmission frequency used. Uplink frequencies and bandwidths for the return channels are set by the system in a return channel control message in the broadcast signal so as to account for system and return channel group loading, and to account for user message backlogs. An initial transmission from a remote user may be made using an ALOHA-type burst signal that provides a message backlog to the control station, and is made on a frequency determined from a randomly weighted, load-based frequency selection process. The system, and not the individual users determine the frequency and channel allocations. For large backlogs or priority users, periodic bandwidth is provided. A method for balancing loads among and between groups of return channels in the communication system includes requesting return channel bandwidth in an uplink message from a remote user to a control station. The uplink message may include a both a backlog indicator and a bandwidth allocation request provided to a Network Operations Center (NOC) which can be used to set the return channel bandwidth and frequency for the remote uplink. A user message is transmitted on the designated return channel frequency using bandwidth allocated in accordance with the backlog indicator and a bandwidth allocation request so that traffic loads are maintained in balance between established return channel frequency groups, and within each return channel frequency group.
Owner:HUGHES NETWORK SYST

Policy based quality of service

A flexible, policy-based, mechanism for managing, monitoring, and prioritizing traffic within a network and allocating bandwidth to achieve true quality of service (QoS) is provided. According to one aspect of the present invention, a method is provided for managing bandwidth allocation in a network that employs a non-deterministic access protocol, such as an Ethernet network. A packet forwarding device receives information indicative of a set of traffic groups, such as: a MAC address, or IEEE 802.1p priority indicator or 802.1Q frame tag, if the QoS policy is based upon individual station applications; or a physical port if the QoS policy is based purely upon topology. The packet forwarding device additionally receives bandwidth parameters corresponding to the traffic groups. After receiving a packet associated with one of the traffic groups on a first port, the packet forwarding device schedules the packet for transmission from a second port based upon bandwidth parameters corresponding to the traffic group with which the packet is associated. According to another aspect of the present invention, a method is provided for managing bandwidth allocation in a packet forwarding device. The packet forwarding device receives information indicative of a set of traffic groups. The packet forwarding device additionally receives information defining a QoS policy for the traffic groups. After a packet is received by the packet forwarding device, a traffic group with which the packet is associated is identified. Subsequently, rather than relying on an end-to-end signaling protocol for scheduling, the packet is scheduled for transmission based upon the QoS policy for the identified traffic group.
Owner:ARISTA NETWORKS

Method and apparatus for simple IP-layer bandwidth allocation using ingress control of egress bandwidth

The present invention relates to a switch for processing data units, such as IP data packets. The switch can be implemented as a router that includes a plurality of input ports, a plurality of output ports and a switch fabric capable of establishing logical pathways to interconnect a certain input port with a certain output port. A characterizing element of the router is its ability to control bandwidth usage on a basis of a logical pathway. This prevents congestion to occur in the switch fabric and also at the level of the output ports. For every active logical pathway the router sets-up a bandwidth control mechanism including at least one queue to hold data units received at an input port. The bandwidth control mechanism performs an accounting operation to determine the average bandwidth usage and if less than a threshold requests for releasing data units in the switch fabric are sent to the switch fabric controller. When the threshold is exceeded the bandwidth control mechanism stops sending requests for service to the switch fabric controller. The system also supports priorities. Instead of stopping the issuance of signals requesting release of data packets the priority level of the queue (reflected in a priority field in the signal requesting release of a data packet) changes from HI to LO. The switch fabric controller is designed to recognize priority requests and will accept LO priority requests only when there are no other HI priority requests pending. The present invention also provides a data transport device which includes a plurality of nodes interconnected by a physical link that establishes two ring-shaped paths on which data is transported on opposite directions. Each node is capable of sending a control message to the upstream node to advise the upstream node of the data carrying requirements of the node at which the message has originated. The upstream node can then throttle the introduction of data in the paths to preserve capacity that can be used by the downstream nodes.
Owner:NORTEL NETWORKS LTD

Apparatus and methods for dynamic bandwidth allocation

A system capable of dynamically reserving bandwidth and adjusting bandwidth reservations for active sessions of data communication in a data communications device is provided. The system generally separates the operation of bandwidth allocation and adjustment from the operation of data transport through the device, thereby allowing bandwidth reservations and adjustments to be made without disturbing sessions of data communication that are actively being transported through the device. The system can accept requests to allocate or reserve bandwidth in a data communications device using bandwidth reservation protocols such as RSVP. The reservation requests create sender state data that can be used to compute resource allocation data. The resource allocation data can be used to label data storage locations in a data storage mechanism according to the required bandwidth reservations. A data scheduling apparatus, which is ignorant of particular sessions and specific amounts of reserved bandwidth, examines data and deposits data into data storage locations having a label corresponding to a session identification specified in the data, if any. If an unknown or no session identification is specified in the data, the data scheduler deposits data into a data storage location that is unlabeled or that has an unreserved label. Thus session bandwidth is determined by the percentage of labeled data storage locations for the session. Changes in bandwidth reservations are reflected in the separate operation of alterations made in the data storage labeling scheme, and do not affect the data scheduler, or data dequeuing mechanisms, thus allowing data sessions to continue without interruption during bandwidth adjustments.
Owner:CISCO TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products