Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1086 results about "Customer-premises equipment" patented technology

In telecommunications, a customer-premises equipment or customer-provided equipment (CPE) is any terminal and associated equipment located at a subscriber's premises and connected with a carrier's telecommunication circuit at the demarcation point ("demarc"). The demarc is a point established in a building or complex to separate customer equipment from the equipment located in either the distribution infrastructure or central office of the communications service provider.

Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PTMP) transmission system architecture

A packet-centric wireless point to multi-point telecommunications system includes: a wireless base station communicating via a packet-centric protocol to a first data network; one or more host workstations communicating via the packet-centric protocol to the first data network; one or more subscriber customer premise equipment (CPE) stations coupled with the wireless base station over a shared bandwidth via the packet-centric protocol over a wireless medium; and one or more subscriber workstations coupled via the packet-centric protocol to each of the subscriber CPE stations over a second network. The packet-centric protocol can be transmission control protocol/internet protocol (TCP/IP). The packet-centric protocol can be a user datagram protocol/internet protocol (UDP/IP). The system can include a resource allocation means for allocating shared bandwidth among the subscriber CPE stations. The resource allocation is performed to optimize end-user quality of service (QoS). The wireless communication medium can include at least one of: a radio frequency (RF) communications medium; a cable communications medium; and a satellite communications medium. The wireless communication medium can further include a telecommunications access method including at least one of: a time division multiple access (TDMA) access method; a time division multiple access/time division duplex (TDMA/TDD) access method; a code division multiple access (CDMA) access method; and a frequency division multiple access (FDMA) access method.
The first data network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN). The second network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN).
Owner:INTELLECTUAL VENTURES I LLC

Identifying works for initiating a work-based action, such as an action on the internet

A system is described for linking traditional media works, such as print and broadcast media for example, to a more interactive media conduit, such as the Internet. The system avoids the need to modify the media work in anyway. Instead, it employs a passive recognition system that uniquely identifies the specific work, such as a particular television or radio broadcast or printed commercial. The identification may be based in intra-work and / or extra-work information. Several different embodiments / environments are described. The best embodiment may depend, at least in part, on costs of hardware and communication. These costs can change over time. In one embodiment, all of the databases and computation are performed at the user's premises. In another embodiment, all of the databases and computation occur at remote sites that user premise equipment can query using uniquely identifying extra-work information, such as the time, place and station on which the work was broadcast. This second embodiment is most suitable for content that is published, e.g. magazines, newspapers, etc., or broadcasted, e.g. cable, satellite and terrestrial television and radio. Alternative embodiments, in which various operations are performed at both the user's premises and remote locations are also possible.
Owner:NETWORK 1 TECH

Identifying works for initiating a work-based action, such as an action on the internet

A system is described for linking traditional media works, such as print and broadcast media for example, to a more interactive media conduit, such as the Internet. The system avoids the need to modify the media work in anyway. Instead, it employs a passive recognition system that uniquely identifies the specific work, such as a particular television or radio broadcast or printed commercial. The identification may be based in intra-work and / or extra-work information. Several different embodiments / environments are described. The best embodiment may depend, at least in part, on costs of hardware and communication. These costs can change over time. In one embodiment, all of the databases and computation are performed at the user's premises. In another embodiment, all of the databases and computation occur at remote sites that user premise equipment can query using uniquely identifying extra-work information, such as the time, place and station on which the work was broadcast. This second embodiment is most suitable for content that is published, e.g. magazines, newspapers, etc., or broadcasted, e.g. cable, satellite and terrestrial television and radio. Alternative embodiments, in which various operations are performed at both the user's premises and remote locations are also possible.
Owner:NETWORK 1 TECH

Virtual private network (VPN)-aware customer premises equipment (CPE) edge router

A network architecture includes a communication network that supports one or more network-based Virtual Private Networks (VPNs). The communication network includes a plurality of boundary routers that are connected by access links to CPE edge routers belonging to the one or more VPNs. To prevent traffic from outside a customer's VPN (e.g., traffic from other VPNs or the Internet at large) from degrading the QoS provided to traffic from within the customer's VPN, the present invention gives precedence to intra-VPN traffic over extra-VPN traffic on each customer's access link through access link prioritization or access link capacity allocation, such that extra-VPN traffic cannot interfere with inter-VPN traffic. Granting precedence to intra-VPN traffic over extra-VPN traffic in this manner entails partitioning between intra-VPN and extra-VPN traffic on the physical access link using layer 2 multiplexing and configuration of routing protocols to achieve logical traffic separation between intra-VPN traffic and extra-VPN traffic at the VPN boundary routers and CPE edge routers. By configuring the access networks, the VPN boundary routers and CPE edge routers, and the routing protocols of the edge and boundary routers in this manner, the high-level service of DoS attack prevention is achieved.
Owner:VERIZON PATENT & LICENSING INC

Virtual private network (VPN)-aware customer premises equipment (CPE) edge router

A network architecture includes a communication network that supports one or more network-based Virtual Private Networks (VPNs). The communication network includes a plurality of boundary routers that are connected by access links to CPE edge routers belonging to the one or more VPNs. To prevent traffic from outside a customer's VPN (e.g., traffic from other VPNs or the Internet at large) from degrading the QoS provided to traffic from within the customer's VPN, the present invention gives precedence to intra-VPN traffic over extra-VPN traffic on each customer's access link through access link prioritization or access link capacity allocation, such that extra-VPN traffic cannot interfere with inter-VPN traffic. Granting precedence to intra-VPN traffic over extra-VPN traffic in this manner entails partitioning between intra-VPN and extra-VPN traffic on the physical access link using layer 2 multiplexing and configuration of routing protocols to achieve logical traffic separation between intra-VPN traffic and extra-VPN traffic at the VPN boundary routers and CPE edge routers. By configuring the access networks, the VPN boundary routers and CPE edge routers, and the routing protocols of the edge and boundary routers in this manner, the high-level service of DoS attack prevention is achieved.
Owner:VERIZON PATENT & LICENSING INC

Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PtMP) transmission system architecture

A packet-centric wireless point to multi-point telecommunications system includes: a wireless base station communicating via a packet-centric protocol to a first data network; one or more host workstations communicating via the packet-centric protocol to the first data network; one or more subscriber customer premise equipment (CPE) stations coupled with the wireless base station over a shared bandwidth via the packet-centric protocol over a wireless medium; and one or more subscriber workstations coupled via the packet-centric protocol to each of the subscriber CPE stations over a second network. The packet-centric protocol can be transmission control protocol / internet protocol (TCP / IP). The packet-centric protocol can be a user datagram protocol / internet protocol (UDP / IP). The system can include a resource allocation means for allocating shared bandwidth among the subscriber CPE stations. The resource allocation is performed to optimize end-user quality of service (QoS). The wireless communication medium can include at least one of: a radio frequency (RF) communications medium; a cable communications medium; and a satellite communications medium. The wireless communication medium can further include a telecommunications access method including at least one of: a time division multiple access (TDMA) access method; a time division multiple access / time division duplex (TDMA / TDD) access method; a code division multiple access (CDMA) access method; and a frequency division multiple access (FDMA) access method. The first data network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN). The second network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN).
Owner:INTELLECTUAL VENTURES I LLC

Method and system for originating connectivity fault management (CFM) frames on non-CFM aware switches

InactiveUS20070140126A1Effective expansionAvoid a lotError preventionFrequency-division multiplex detailsOperations, administration and managementOperability
A system for originating connectivity fault management (CFM) frames on non-CFM aware switches is disclosed. In the disclosed system, an OAM (Operations Administration and Management) proxy networking device connected to a core Ethernet network operates with one or more CPE (Customer Premises Equipment) devices to which it is communicably connected to support CFM out to the CPE devices without requiring that the CPE devices themselves implement CFM functionality. The OAM proxy networking device generates Connectivity Check (CC) frames, Loopback reply frames, and Linktrace reply frames for MEPs (Maintenance End Points) or MIPs (Maintenance Intermediate Points) contained in communication ports on the CPEs. These CFM frames generated by the OAM proxy networking device are then sent within messages from the OAM proxy networking device to the appropriate CPE. When the CPE device receives a message from the OAM proxy networking device containing one of these CFM frames, it checks the operability of a communication port indicated by the message. If the port is operable, the CPE device extracts the CFM frame from the message and originates it through the OAM proxy networking device into the core Ethernet network. The OAM proxy networking device further operates to process Connectivity Check frames received from the core Ethernet network and addressed to the CPE devices by maintaining an MEP connectivity database. As a result, these received Connectivity Check frames are dropped without forwarding to the CPE devices.
Owner:RPX CLEARINGHOUSE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products