Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8974 results about "Multi point" patented technology

Multipoint may refer to: Multi-point fuel injection, an injection scheme for metering fuel into an internal combustion engine. Multipoint (geography), a point on the Earth that touches the border of several distinct territories.

Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PTMP) transmission system architecture

A packet-centric wireless point to multi-point telecommunications system includes: a wireless base station communicating via a packet-centric protocol to a first data network; one or more host workstations communicating via the packet-centric protocol to the first data network; one or more subscriber customer premise equipment (CPE) stations coupled with the wireless base station over a shared bandwidth via the packet-centric protocol over a wireless medium; and one or more subscriber workstations coupled via the packet-centric protocol to each of the subscriber CPE stations over a second network. The packet-centric protocol can be transmission control protocol/internet protocol (TCP/IP). The packet-centric protocol can be a user datagram protocol/internet protocol (UDP/IP). The system can include a resource allocation means for allocating shared bandwidth among the subscriber CPE stations. The resource allocation is performed to optimize end-user quality of service (QoS). The wireless communication medium can include at least one of: a radio frequency (RF) communications medium; a cable communications medium; and a satellite communications medium. The wireless communication medium can further include a telecommunications access method including at least one of: a time division multiple access (TDMA) access method; a time division multiple access/time division duplex (TDMA/TDD) access method; a code division multiple access (CDMA) access method; and a frequency division multiple access (FDMA) access method.
The first data network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN). The second network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN).
Owner:INTELLECTUAL VENTURES I LLC

Dynamic bandwidth allocation

InactiveUS7069577B2Prevents untoward spectral effectMore balancedError preventionModulated-carrier systemsFiberModem device
The communication system includes a hybride fiber / coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber / coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber / coax distribution network. The head end includes head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information. The system further includes service units, each service unit operatively connected to the hybrid fiber / coax distribution network for upstream transmission of telephony and control data in the second frequency bandwidth and for receipt of the downstream control data and telephony in the first frequency bandwidth. Each service unit includes a service unit multicarrier modem for modulating at least the upstream telephony information on at least one carrier orthogonal at the head end terminal to another carrier in the second frequency bandwidth and for demodulating at least downstream telephony information modulated on at least a band of a plurality of orthogonal carriers in the first frequency bandwidth. Each service unit also includes a controller operatively connected to the service unit multicarrier modem for controlling the modulation of and demodulation performed by the service unit multicarrier modem. A method of monitoring communication channels, a distributed loop method for adjusting transmission characteristics to allow for transmission of data in a multi-point to point communication system, a polyphase filter technique for providing ingress protection and a scanning method for identifying frequency bands to be used for transmission by service units are also included. Also provided is a method and apparatus for performing a Fast Fourier Transform (FFT). In one embodiment, a scalable FFT system is built using a novel dual-radix butterfly core.
Owner:HTC CORP

Ergonomic lift-clicking method and apparatus for actuating home switches on computer input devices

This invention introduces lift-clicking, a gentle method of clicking that utilizes light touch home sensors on the mouse and other computer input devices. It can be used either to replace the prior art depression-type mouse button with a home touch surface and a light touch or proximity sensor, or to add a touch/proximity sensor to an existing mouse button, providing three or more additional functions for each finger. It is a very ergonomic method that uses less force than the weight of the relaxed resting finger. It employs a finger lift, or a finger lift followed by a gentle drop, and utilizes unique combinations of windows, timing, hand presence reference, and logic sequences carefully designed to automatically prevent the production of unwanted clicks when the finger first arrives on or leaves the home sensor as the hand arrives or departs the input device. The initial condition is a finger resting on a touch switch/proximity sensor surface at a home resting position. A function is triggered either by lifting (or sliding) the finger away from its home touch surface (lift-delay-reference mode) or by dropping the finger back to the surface soon after the lift (lift-drop mode). Unwanted clicks do not occur because the function is triggered either by a lift after a very short delay with a requirement for hand presence reference, or by a drop within a time window opened by the previous lift. The gentle lift of the finger followed by a passive drop eliminates the push-down muscle twitch of prior art depression clicking, without any sacrifice of speed. Optionally included are click-inhibiting means so that unwanted clicks are not produced when a finger leaves a home sensor to actuate a non-home switch or scroll device. Momentary lifted modes can be used to enable scrolling with mouse motion, a fine cursor control feature, or to ignore all XY data so that the mouse can be repositioned without lifting it off the desktop and without moving the cursor (disengage clutch feature). Dragging can be accomplished with either the finger held lifted or with the finger resting at home. A single lift-click sensor can be used to trigger two different functions, the function chosen depending on the amount of time between the lift and the drop. The lift-click sensor can be piggybacked together with a prior art mouse button to provide lift-clicking while still allowing depression clicking, greatly increasing the number of triggerable functions. A lift-click sensor can be of a fixed type with no moving parts, (a zero button mouse) allowing the manufacture of pointing devices that are completely solid state, low in cost and sealed from the environment. The lift-click method makes it possible to replace the click buttons on a horizontal mouse with a programmable multi-point XY(Z) multi-functional touchpad which can be used to provide not only lift-clicks, but by toggling to new function sets, can also offer arrow/nudge key functions, page navigation, fine cursor control, and gesturing. Lift-clicking can greatly improve versatility and ease of use in most types of pointing devices.
Owner:CONRAD RICHARD H

Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PtMP) transmission system architecture

A packet-centric wireless point to multi-point telecommunications system includes: a wireless base station communicating via a packet-centric protocol to a first data network; one or more host workstations communicating via the packet-centric protocol to the first data network; one or more subscriber customer premise equipment (CPE) stations coupled with the wireless base station over a shared bandwidth via the packet-centric protocol over a wireless medium; and one or more subscriber workstations coupled via the packet-centric protocol to each of the subscriber CPE stations over a second network. The packet-centric protocol can be transmission control protocol / internet protocol (TCP / IP). The packet-centric protocol can be a user datagram protocol / internet protocol (UDP / IP). The system can include a resource allocation means for allocating shared bandwidth among the subscriber CPE stations. The resource allocation is performed to optimize end-user quality of service (QoS). The wireless communication medium can include at least one of: a radio frequency (RF) communications medium; a cable communications medium; and a satellite communications medium. The wireless communication medium can further include a telecommunications access method including at least one of: a time division multiple access (TDMA) access method; a time division multiple access / time division duplex (TDMA / TDD) access method; a code division multiple access (CDMA) access method; and a frequency division multiple access (FDMA) access method. The first data network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN). The second network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN).
Owner:INTELLECTUAL VENTURES I LLC

Desktop sharing method and system

The invention provides a desktop sharing method and a system. The system comprises a sharing terminal, a multimedia multi-point control unit, a viewing terminal and a control terminal, wherein, the sharing terminal is used for collecting desktop images and position and status information of a mouse, receiving operation events from the control terminal and replaying and displaying the events after processing; the multimedia multi-point control unit is used for forwarding the desktop images and the operation events; the viewing terminal is used for receiving the desktop images, and the position and status information of the mouse from the sharing terminal and replaying and displaying the information after decoding and decompression; and the control terminal is used for receiving the desktop images from the sharing terminal, replaying and displaying the information after decoding and decompression, simultaneously carrying out the operation on the desktop images transmitted by the sharing terminal and sending the operation event to the sharing terminal by MCU. The viewing terminal of the desktop sharing system can smoothly browse the remote desktop image and carry out the operation on the sharing terminal by the remote control terminal, truly reflects the operation events as the operation on the sharing terminal, and has excellent interaction effect.
Owner:GUANGDONG VTRON TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products