Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

490 results about "Wound closure" patented technology

Removable wound closure

A system and method for the temporary closure of a wound, especially an abdominal wound, to facilitate re-entry, final closure, and long term healing of the wound. An abdominal wound dressing and methods of use are described that enable the application of negative pressure to the wound site in a site healing promoting manner while also limiting the formation of adhesions that would prevent the removal of the dressing. The dressing comprises a layer of porous foam material (36) enclosed by sheets of elastomeric material (38) punctuated by a number of appropriately placed holes (34). Multiple layers of porous foam may also be used. A suction tube connector (16) is provided on an upper surface of a layer of foam (12) for connection to a negative pressure source. At least one layer of foam is enclosed in elastomeric material and is placed in direct contact with the tissue within the open wound. Fluids are drawn by negative pressure through the holes positioned in the elastomeric envelope, and through the foam. If multiple foam layers are employed, the lower layer(s) of foam are of a finer porosity while the upper layer of foam is coarse. An adhesive elastomeric sheet (14) covers the entire wound dressing and seals the edges to the skin surrounding the wound. An appropriate vacuum device is attached to the suction tube connector.
Owner:KCI LICENSING INC

System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure

A method and apparatus for the transcutaneous monitoring of blood gases generally comprises a blood gas data acquisition device, a vacuum source and a blood gas transducer unit. The blood gas transducer unit is adapted for application to a patient's skin and administration of a local vacuum at the area of patient application. It further comprises an electrochemical blood gas transducer, well known to those of ordinary skill in the art, which is disposed entirely within the local vacuum at the area of patient application. The vacuum source is placed in fluid communication with the blood gas transducer unit, through a hydrophobic membrane filter for safety purposes, in order to induce a condition of hyperperfusion in the locality of the electrochemical blood gas transducer. Under the control of a microcontroller, or equivalent means, the blood gas acquisition device is then utilized to capture a measure of skin surface oxygen or carbon dioxide pressure. The microcontroller can then utilize this measure to arrive at an estimate of arterial partial pressure of oxygen or carbon dioxide, accordingly. Because vacuum induced perfusion produces the requisite condition of hyperperfusion without local heating and, therefore, without acceleration of the local metabolic function, the present invention results in more accurate than previously available estimates of partial pressure blood gas pressures and does so while eliminating a significant risk for injury to the patient.
Owner:KCI LICENSING INC

Vacuum assisted closure pad with adaptation for phototherapy

A modified vacuum assisted wound closure system adapted for concurrent applications of phototherapy having a foam pad for insertion substantially into the wound site and a wound drape for sealing enclosure of the foam pad at the wound site. The foam pad includes an optical pigtail, whereby desired wavelength of light may be directed into and about the wound site. The foam pad is placed in fluid communication with a vacuum source for promotion of fluid drainage. The foam pad is made of a highly reticulated, open-cell polyurethane or polyether foam for good permeability of wound fluids while under suction and is also embedded with an optical pigtail. The optical pigtail comprises an optical fiber that has been formed to fan into a plurality of sections. The fibers of the most distal fanned sections, which are implanted in the foam pad at its base, are provided with tiny optical slots, oriented away from the foam pad and toward the wound site. Each optical slot is made by stripping the cladding from the optical fiber in the desired areas of the fanned sections to form slot radiators. Because it is necessary to trim the foam pad in preparation for therapy, the optical fibers comprise plastics, such as acrylic or styrene. Upon placement of the pad, having the optical pigtail embedded therein, the wound drape is firmly adhered about the VAC therapy suction hose as well as the extending optical fiber to prevent vacuum leakage.
Owner:MORGAN STANLEY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products