Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

13815 results about "Vacuum pump" patented technology

A vacuum pump is a device that removes gas molecules from a sealed volume in order to leave behind a partial vacuum. The first vacuum pump was invented in 1650 by Otto von Guericke, and was preceded by the suction pump, which dates to antiquity.

Method and apparatus for obtaining blood for diagnostic tests

Method and apparatus for obtaining a sample of blood from a patient for subsequent diagnostic tests, e.g., glucose monitoring. In one aspect of the invention, the method comprises the steps of:
    • (a) placing a blood collection device over a region on the surface of the skin from which said sample is to be obtained,
    • (b) forming a seal between said blood collection device and said surface of the skin,
    • (c) creating a vacuum sufficient to result in said surface of the skin becoming stretched and engorged with blood,
    • (d) triggering a lancing assembly and causing a lancet to penetrate said skin,
    • (e) retracting said lancet,
    • (f) withdrawing blood toward and onto a fluid collector, and
    • (g) releasing the vacuum.
In another aspect of the invention, an apparatus for carrying out the method described previously is provided. The apparatus comprises:
    • (a) a housing having a sealable chamber located therein and a sealable opening in fluid communication with said sealable chamber,
    • (b) a power source,
    • (c) a vacuum pump operably connected to said power source, said vacuum pump in communication with said sealable chamber,
    • (d) a lancing assembly positioned within said housing, said lancing assembly capable of moving a lancet towards said sealable opening, and
    • (e) a fluid collector positioned in said sealable chamber, said fluid collector in fluid communication with said sealable opening.

Temperature measurement and calibration platform in space vacuum environment

The invention relates to a temperature measurement and calibration platform in space vacuum environment. The temperature measurement and calibration platform is favorable for realizing the simultaneous calibration of contact type temperature measurement and non-contact type temperature measurement, so the temperature measurement and calibration platform is served for heat vacuum and heat balance experiments of spacecrafts such as satellites, spaceship and the like. The temperature measurement and calibration platform comprises a constant temperature bath, wherein a double-sub-cavity vacuum cavity, the double-sub-cavity vacuum cavity comprises a first vacuum cavity body and a second vacuum cavity body, the first vacuum cavity body and the second vacuum cavity body are connected with a vacuum pumping device through a three-way valve, standard temperature indicator sensors are respectively arranged on the outer wall of the first vacuum cavity body and on the outer wall of the second vacuum cavity body, the standard temperature indicator sensors are connected with a temperature secondary meter, a laser light path reflecting device is arranged in the vacuum cavity of the first vacuum cavity body for calibrating a non-contact type temperature measuring system based on the tunable diode laser absorption spectrum technology, and the vacuum cavity of the second vacuum cavity body is used for accommodating a temperature sensor for calibrating a contact type temperature measuring system adopting the temperature sensor.

Vacuum pneumatic system for conveyance of ice

Vacuum pneumatic conveying apparatus and method are described to provide for a simple, economical, convenient (and preferably automatic) system for conveying ice on an as-required basis from a source such as an ice maker to one or more receptors at locations remote from that source. The system can be configured such that dispensing locations can be added or eliminated from the system or temporarily taken "off line" from the system without the need to change the basic system configuration or the central ice providing apparatus. The apparatus in various embodiments includes an ice source, a conveying conduit from the source to the receptor, a vacuum pump for moving the ice through the conduit by vacuum, and the receptor to collect the conveyed ice. The receptor may be an ice/beverage dispenser, an accumulator for retention and discharge to further devices, an intermediate storage dispenser, or an air lock device from where the ice can be projected over significant distances. Ice and vacuum may simultaneously be routed into different branched routes, utilizing a unique diverter/air shifter with the capability of providing routing to up to four different routes. Appropriate sensors and controllers, which may be microprocessor-based, may be used to automate the system. The entire system is easily cleanable. The system is advantageously used by restaurants, groceries, hotels and motels, hospitals, laboratories, and many other establishments where the providing of ice at various locations is desirable or required.

Track sucker type wall surface cleaning robot

The invention discloses a miniature robot capable of walking and cleaning on vertical surfaces such as a glass curtain wall and a ceramic outer wall. The robot walks through a track provided with a sucker, the track sucker is connected with a vacuum pump, and local vacuum is formed by air extraction so as to generate negative pressure; the sucker is of a specially designed structure with an air valve to exhaust through lever action; a steering sucker is arranged in the middle of a robot chassis, a motor controls a ball screw to operate so that a robot vehicle body rotates around the axis of the steering sucker so as to steer; an ultrasonic detection and feedback device is arranged at the front end of the robot vehicle body to guarantee the robot to measure and avoid barriers in real time during the walking process; and a fog-shaped spraying device, a drum brushing and washing device and a scraping plate washing device are installed on the robot vehicle body to clean the wall surface during the walking process of the robot. By means of the multi-technology multi-science combination, namely combination of a robot system function, a mechanical structure, a movement mechanism, an electronic circuit, a sensing detection, a program control and the like of the robot, the robot can reliably walk and efficiently clean on vertical surfaces such as the glass curtain wall and the ceramic outer wall.

Bidirectional tosh grinding ultra-fine crashing objects and its method

The present invention discloses a bidirectional-rotating ball-milling ultra-fine crushing device and the method thereof. The device is arranged with a jacket which is provided with cooling water; a closed material storing warehouse which closes the feeding/discharging material opening is arranged at the lower end of the barrel body; a vacuum pumping valve which is connected with the vacuum pumping device is arranged at random feeding/discharging cover plate on the barrel body; and an inner lining is arranged at the inner surface of the barrel body. The bidirectional-rotating ball-milling ultra-fine crushing method is doing vacuum pumping to the inner side of the barrel body and actuating the transmission device to do ultra-fine crushing when the raw material above 80 mu is added into the barrel body, wherein the rotary speed of the barrel is 40 to 70 rotation/minute and the rotary speed of the inner rotating axle is 20 to 40 rotation/minute; the mass of the grinding ball gradation phi between 5 to 10mm accounts for 35% to 55% of the total grinding ball mass, phi between 10 to 20mm accounts for 25% to 35% of the total grinding ball mass and the phi between 20 to 30mm accounts for 20% to 35% of the total grinding ball mass; and the mass ratio of the material ball is 1:4 to 1:15. The invention has the advantages of short producing time, low energy consumption and reduced producing cost, and the invention overcomes the fine particle problems of easy aggregation to block and fusing-aggregation, etc.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products