Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7906 results about "Gate dielectric" patented technology

A gate dielectric is a dielectric used between the gate and substrate of a field-effect transistor. The capacitance and thickness constraints are almost directly opposed to each other. For silicon-substrate FETs, the gate dielectric is almost always silicon dioxide (called "gate oxide"), since thermal oxide has a very clean interface. However, the semiconductor industry is interested in finding alternative materials with higher dielectric constants, which would allow higher capacitance with the same thickness.

Thin films

Thin films are formed by formed by atomic layer deposition, whereby the composition of the film can be varied from monolayer to monolayer during cycles including alternating pulses of self-limiting chemistries. In the illustrated embodiments, varying amounts of impurity sources are introduced during the cyclical process. A graded gate dielectric is thereby provided, even for extremely thin layers. The gate dielectric as thin as 2 nm can be varied from pure silicon oxide to oxynitride to silicon nitride. Similarly, the gate dielectric can be varied from aluminum oxide to mixtures of aluminum oxide and a higher dielectric material (e.g., ZrO2) to pure high k material and back to aluminum oxide. In another embodiment, metal nitride (e.g., WN) is first formed as a barrier for lining dual damascene trenches and vias. During the alternating deposition process, copper can be introduced, e.g., in separate pulses, and the copper source pulses can gradually increase in frequency, forming a transition region, until pure copper is formed at the upper surface. Advantageously, graded compositions in these and a variety of other contexts help to avoid such problems as etch rate control, electromigration and non-ohmic electrical contact that can occur at sharp material interfaces. In some embodiments additional seed layers or additional transition layers are provided.
Owner:ASM INTERNATIONAL

Process for manufacturing dual work function metal gates in a microelectronics device

The present invention provides a method of forming a dual work function metal gate microelectronics device 200. In one aspect, the method includes forming nMOS and pMOS stacked gate structures 315a and 315b. The nMOS and pMOS stacked gate structures 315a and 315b each comprise a gate dielectric 205, a first metal layer, 305 located over the gate dielectric 205 and a sacrificial gate layer 310 located over the first metal layer 305. The method further includes removing the sacrificial gate layer 310 in at least one of the nMOS or pMOS stacked gate structures, thereby forming a gate opening 825 and modifying the first metal layer 305 within the gate opening 825 to form a gate electrode with a desired work function.
Owner:TEXAS INSTR INC

Incorporation of nitrogen into high k dielectric film

A high k dielectric film and methods for forming the same are disclosed. The high k material includes two peaks of impurity concentration, particularly nitrogen, such as at a lower interface and upper interface, making the layer particularly suitable for transistor gate dielectric applications. The methods of formation include low temperature processes, particularly CVD using a remote plasma generator and atomic layer deposition using selective incorporation of nitrogen in the cyclic process. Advantageously, nitrogen levels are tailored during the deposition process and temperatures are low enough to avoid interdiffusion and allow maintenance of the desired impurity profile.
Owner:ASM IP HLDG BV

Low temperature thin film transistor process, device property, and device stability improvement

A method and apparatus for forming a thin film transistor is provided. A gate dielectric layer is formed, which may be a bilayer, the first layer deposited at a low rate and the second deposited at a high rate. In some embodiments, the first dielectric layer is a silicon rich silicon nitride layer. An active layer is formed, which may also be a bilayer, the first active layer deposited at a low rate and the second at a high rate. The thin film transistors described herein have superior mobility and stability under stress.
Owner:APPLIED MATERIALS INC

Adsorption based material removal process

Methods for accurate and conformal removal of atomic layers of materials make use of the self-limiting nature of adsorption of at least one reactant on the substrate surface. In certain embodiments, a first reactant is introduced to the substrate in step (a) and is adsorbed on the substrate surface until the surface is partially or fully saturated. A second reactant is then added in step (b), reacting with the adsorbed layer of the first reactant to form an etchant. The amount of an etchant, and, consequently, the amount of etched material is limited by the amount of adsorbed first reactant. By repeating steps (a) and (b), controlled atomic-scale etching of material is achieved. These methods may be used in interconnect pre-clean applications, gate dielectric processing, manufacturing of memory devices, or any other applications where removal of one or multiple atomic layers of material is desired.
Owner:NOVELLUS SYSTEMS

Method of controlling the film properties of a CVD-deposited silicon nitride film

We have discovered that adding H2 to a precursor gas composition including SiH4, NH3, and N2 is effective at improving the wet etch rate and the wet etch rate uniformity across the substrate surface of a-SiNx:H films which are deposited on a substrate by PECVD. Wet etch rate is an indication of film density. Typically, the lower the wet etch rate, the denser the film. The addition of H2 to the SiH4 / NH3 / N2 precursor gas composition did not significantly increase the variation in deposited film thickness across the surface of the substrate. The a-SiNx:H films described herein are particularly useful as TFT gate dielectrics in the production of flat panel displays. The uniformity of the film across the substrate enables the production of flat panel displays having surface areas of 25,000 cm2 and larger.
Owner:APPLIED MATERIALS INC

Methods for forming a semiconductor device and related semiconductor device structures

Methods for forming a semiconductor device and related semiconductor device structures are provided. In some embodiments, methods may include forming an NMOS gate dielectric and a PMOS gate dielectric over a substrate and forming a first work function metal over the NMOS gate dielectric and over the PMOS gate dielectric. In some embodiments, methods may also include, removing the first work function metal over the NMOS gate dielectric and forming a second work function metal over the NMOS gate dielectric and over the PMOS gate dielectric. In some embodiments, related semiconductor device structures may include an NMOS gate dielectric and a PMOS gate dielectric disposed over a semiconductor substrate. A PMOS gate electrode may be disposed over the PMOS gate dielectric and the PMOS gate electrode may include a first work function metal disposed over the PMOS gate dielectric and a second work function metal disposed over the first work function metal. A NMOS gate electrode may be disposed over the NMOS gate dielectric and the NMOS gate electrode may include the second work function metal.
Owner:ASM IP HLDG BV

Method of fabricating a semiconductor device having self-aligned floating gate and related device

A semiconductor device such as a flash memory device having a self-aligned floating gate and a method of fabricating the same is provided. An embodiment of the device includes an isolation layer defining a fin body is formed in a semiconductor substrate. The fin body has a portion protruding above the isolation layer. A sacrificial pattern is formed on the isolation layer. The sacrificial pattern has an opening self-aligned with the protruding portion of the fin body. The protruding fin body is exposed in the opening. An insulated floating gate pattern is formed to fill the opening. The sacrificial pattern is then removed. An inter-gate dielectric layer covering the floating gate pattern is formed. A control gate conductive layer is formed over the inter-gate dielectric layer. The control gate conductive layer, the inter-gate dielectric layer, and the floating gate pattern are patterned to form a control gate electrode crossing the fin body as well as the insulated floating gate interposed between the control gate electrode and the fin body.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products