Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2944 results about "Steam generation" patented technology

Steam Generation Steam is generated in main generation plants, and/or at various process units using heat from flue gas or other sources. Heaters (furnaces) include burners and a combustion air system, the boiler enclosure in which heat transfer takes place, a draft or pressure...

Apparatus and method for applying coatings onto the interior surfaces of components and related structures produced therefrom

Provided is a methodology and system for applying coatings onto the interior surfaces of components. The approach comprises a vapor creation device (for example an electron beam or laser that evaporates a single or multiplicity of solid or liquid sources), a vacuum chamber having a moderate gas pressure (between about 10−4 to about 103 Torr) and a inert gas jet having controlled velocity and flow fields of gas jet. The gas jet is created by a rarefied, inert gas supersonic expansion through a nozzle. By controlling the carrier gas flow into a region upstream of the nozzle an upstream pressure is achieved (i.e. the gas pressure prior to its entrance into the processing chamber through the nozzle). The carrier gas flow and chamber pumping rate control the downstream (or chamber) pressure (i.e., downstream of the nozzle). The ratio of the upstream to downstream pressure along with the size and shape of the nozzle opening controls the speed of the gas entering the chamber. The carrier gas molecular weight (compared to that of the vapor) and the carrier gas speed controls its effectiveness in redirecting the vapor atoms via binary collisions towards the substrate. The speed and flux of the atoms entering the chamber, the nozzle parameters, and the operating chamber pressure can all vary leading to a wide range of accessible processing conditions. Vapor created from a source is transported into the interior regions of a component using binary collisions between the vapor and gas jet atoms. Under certain process conditions these collisions enable the vapor atoms to scatter onto the interior surfaces of the component and deposit.
Owner:UNIV OF VIRGINIA ALUMNI PATENTS FOUND

Solar selective coating having higher thermal stability useful for harnessing solar energy and a process for the preparation thereof

The present invention provides an improved solar selective multilayer coating having higher thermal stability and a process for the preparation thereof. Solar selective coatings having higher thermal stability are useful in solar steam generation, solar steam turbines to produce electricity and also on automobile engine components. In the present invention, a tandem stack of three layers of TiAlN, TiAlON and Si3N4 is deposited on metal and non-metal substrates at room temperature using a planar reactive direct current magnetron sputtering process. The first two layers function as the absorber and the third antireflection layer further enhances the coating's absorptance. The solar selective coatings were annealed in air and vacuum to test the thermal stability at different temperatures and durations. The coatings of the present invention deposited on copper substrates are stable in air up to a temperature of 625° C. for a duration of 2 hours and exhibit higher solar selectivity in the order of 9-10 and these coating also show no change in the absorptance and the emittance values even after vacuum annealing at 600° C. for 3 hours. Coatings deposited on copper substrates showed no significant degradation in the optical properties even after continuous heating in air at 525° C. for 50 hours. The solar selective coatings of the present invention exhibit high hardness, high oxidation resistance, chemical inertness and stable microstructure.
Owner:COUNCIL OF SCI & IND RES

All-weather energy and water production via steam-enhanced vortex tower

The large-scale green power, pure chilled, heated water and/or conditioned directed air are produced using wind, heat and vapor of the free humid air in the structured multi-unit space-saving vortex tower providing direct three-phase voltage induction with alternating magnetic whirl formed by pole radial self-orienting magnetic concentrators swirled via all-weather multi-step tornado-like flow supplementary energized, enhanced and controlled by a spatial system of fast directing and accelerating low-temperature steam jets injected through fleshing of recycled, separated and stored condensate slightly heated with any renewable, waste, secondary, or prime source of low-temperature heat, partly via combining with solar pond and heaters or/and geothermal media, or/and waste, secondary or initial heat of large thermal, atomic power plant or intensively energy consuming industry, reducing specific investment, energy and pure water costs, quality requirements, specific pollution and waste heat atmospheric injection, with possibilities of partial local weather corrections through conditioned directed waste tower air; a new sector with various directions can be widened, based on applying of the same principles of energizing, enhancement, control and usage of any kind of fast gaseous confined vortex flow via any kind of supplementary low-temperature steam
Owner:KAPLOUN SOLOMON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products