Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4935results about "Steam boilers" patented technology

Method of and power plant for generating power by oxyfuel combustion

InactiveUS7874140B2Costs lossesLosses of powerGas turbine plantsHeat recoveryPower stationCombustion
A method of and a power plant for generating power by combusting carbonaceous fuel with substantially pure oxygen, and a method of modifying a process of generating power by combusting carbonaceous fuel from combusting the fuel with air to combusting the fuel with substantially pure oxygen. The methods include feeding substantially pure oxygen into a furnace for combusting fuel with the oxygen to produce exhaust gas including mainly carbon dioxide and water, recovering low-grade heat from the exhaust gas by using multiple exhaust gas coolers arranged in a downstream portion of the exhaust gas channel, wherein a first portion of the recovered low-grade heat is used for preheating feedwater; pressurizing a first portion of the exhaust gas in multiple exhaust gas compressors so as to produce liquid carbon dioxide, recycling a second portion of the exhaust gas to the furnace via an exhaust gas recycling channel, using a first portion of steam extracted from a steam turbine system to preheat feedwater, wherein the first portion of the recovered low-grade heat is more than 50% of the total amount of recovered low-grade heat, or larger than the first portion of the recovered low-grade heat in the air-fired process, allowing minimizing of the first portion of the extracted steam, and the expanding of a second portion of the extracted steam in at least one auxiliary steam turbine for driving at least one compressor or at least one pump of the power plant.
Owner:AMEC FOSTER WHEELER POWER EQUIP CO INC

Method and apparatus for producing superheated steam using heat from the incineration of waste material

PCT No. PCT/JP97/00573 Sec. 371 Date Jan. 12, 1998 Sec. 102(e) Date Jan. 12, 1998 PCT Filed Feb. 27, 1997 PCT Pub. No. WO97/32161 PCT Pub. Date Sep. 4, 1997According to the present invention, boiler water is pressurized so that its boiling point is set at approximately 200 DEG C. to 320 DEG C. The boiler water is heated in at least two stages. Thermal energy of gases containing chlorine compounds is used to heat the water to its boiling point. Thermal energy of gases which do not contain chlorine compounds is used to heat the water from its boiling point until superheated steam of a given temperature is generated. The heating which uses the thermal energy of gases containing chlorine compounds is accomplished using the thermal energy from the combustion of pyrolysis gases obtained from a pyrolysis means in which waste material is supplied into a chamber containing a fluidized bed medium which has been heated to at least 300 DEG C., and a pyrolytic reaction is induced. The heating which uses the thermal energy of gases which do not contain chlorine compounds is accomplished using the thermal energy obtained from a char combustion means to combust char in which a char mixture consisting of unpyrolyzed residue and fluidized bed medium removed from the pyrolysis means is fluidized by a stream of air, and the unpyrolyzed residue is combusted.
Owner:MITSUBISHI HEAVY IND LTD

Coal-based supercritical carbon dioxide Brayton cycle double-split-flow efficient power generation system

The invention discloses a coal-based supercritical carbon dioxide Brayton cycle double-split-flow efficient power generation system which comprises a low-temperature regenerator, a precooler, a main compressor, a re-compressor, a high-temperature regenerator, a boiler, a high-pressure turbine, a low-pressure turbine and an electric generator. The boiler is composed of a combustion channel, a main heat exchange channel and a tail flue in the smoke flowing direction, wherein the combustion channel, the main heat exchange channel and the tail flue are communicated in sequence; a water-cooled wall and a reheating water-cooled wall are sequentially arranged in the combustion channel in the smoke flowing direction; a high-temperature superheater and a high-temperature reheater are sequentially arranged in the main heat exchange channel in the smoke flowing direction; a baffle, a coal economizer and a low-temperature coal economizer are sequentially arranged in the tail flue in the smoke flowing direction, and a low-temperature reheater and a lower-temperature superheater are arranged on the two sides of the baffle. According to the coal-based supercritical carbon dioxide Brayton cycle double-split-flow efficient power generation system, optimal combining of the coal-fired boiler and the supercritical carbon dioxide Brayton cycle can be achieved, and the heat exchange efficiency of the high-temperature regenerator, the thermal efficiency of the boiler and the efficiency of the power generation system are high.
Owner:XIAN THERMAL POWER RES INST CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products