Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

5829 results about "Data connection" patented technology

Automatic and seamless vertical roaming between wireless local area network (WLAN) and wireless wide area network (WWAN) while maintaining an active voice or streaming data connection: systems, methods and program products

A Mobile Station (MS) is able to vertically roam in either direction between two different network, i.e. WWAN and WLAN. The MS is equipped with a dual mode Radio for WWAN and WLAN transmissions. The WLAN Radio is linked to a WLAN Enterprise Gateway Controller (EGC) via a first air link and the WWAN Radio is linked to a WWAN Base Transceiver Station (BTS) via a second air link. The EGC is connected to a Mobile Switching Center (MSC) which is in turn connected to the BTS. An outgoing VoIP call from the WLAN Radio to a remote party on the WWAN will transition or seamlessly switch over to a WWAN connection when the MS detects packet error rates, frequent scale back or consistent signal degradation. Upon such conditions, the WLAN Radio requests the EGC to request an Explicit Call Transfer via the MSC to the MS integrated WWAN Radio portion which automatically accepts the call based on referenced information stored in the user's subscriber identification module (SIM). Once the WWAN Radio is confirmed connected to the remote party on the WWAN, the WLAN Radio drops the WLAN connection. An incoming call between the MS and a remote user via the WWAN will transition to the WLAN Radio when the MS enters WLAN coverage. The MS issues an ECT to the WLAN. After user verification by the WLAN Radio and the EGC signals acceptance of the call, the WWAN Radio connection is dropped and the call is now established between the WLAN Radio and the remote party on the WWAN.

System and method for acquiring data

A system for acquiring, and displaying, data such as physiological data, from a plurality of data connection devices, each of which monitor one or more different parameters and output data at different sampling frequencies based on their own system clocks. The system receives the data signals at different sampling frequencies and associates each sample of each signal with a time stamp derived from a single master clock. Low rate and high rate data are treated differently. Low rate data is associated with the current value of the master clock, where as high rate data is time stamped by giving the first sample a time stamp equal to the current value of the current master clock, subsequent samples being given an estimated time stamp based on the expected interval between samples derived from the sampling frequency of the data collection device, and the timescale given to the first example. The estimated time stamp may be periodically corrected, and the estimation calculation can be improved by correcting the value used for the interval between samples. The different signals can be displayed together on a display aligned with respect to a time axis. The system can display, the data in two different timescales, one showing a few seconds of data and one showing a few hours of data. The data traces are scrolled across the time axis, new data being added to one end of the trace.

System and method of user authentication for network communication through a policy agent

A policy agent of a network performs an out-of-band user authentication process to verify the identity of a user of a client computer and associates the network data received from the client computer with the user. When the client computer initiates a network data connection to or through the policy agent, the policy agent sends an encrypted challenge to the client computer. The challenge is encrypted with a private key of the policy agent. When the client computer receives the challenge, it decrypts the challenge and prepares a message digest value based on the challenge and the network data sent by the user. The message digest value is then encrypted with the private key of the user to form a response, and the response is sent to the policy agent. The policy agent decrypts the response with the public key of the user to obtain the message digest value and calculates a digest value based on the challenge and the received network data. The policy agent then compares the calculated digest value with the decrypted digest value. A match between the two digest values indicates that the user is successfully authenticated and that the received network data are associated with the user. The policy agent may then apply network policies based on the credentials of the authenticated user.

Voice-over-IP enabled chat

A network-based system and method for providing anonymous voice communications using the telephone network and data communications links under the direction of a Call Broker and associated network elements. A user (the call initiator) present in a text chat room session establishes a data connection to Call Broker and, after qualifying for access (e.g., using credit card information) and providing a callback number, receives voice session information and participant access codes for each desired participant in a voice call. The initiator causes session information and participant codes to be passed to one or more selected chat participants in the current text chat room. When a selected participant uses the received session information, and enters the received participant code and a callback number, the Call Broker in cooperation with a Network Adjunct Processor (NAP) completes voice links to the initiator and the selected participant(s). The need for each party to have a second subscriber line is advantageously avoided by having the Call Broker arrange to have one or more voice links completed through a VoIP link, and further reduces the need for second lines for participants by forwarding a Call Broker—placed call to a busy participant line to the participant's Internet Service Provider (ISP), which then sends a message to the participant announcing one or more options for receiving the incoming call, including receiving the incoming call through a VoIP link.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products