Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2165 results about "Forward error correction" patented technology

In telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is the sender encodes the message in a redundant way, most often by using an error-correcting code (ECC).

Usage statistics collection for a cable data delivery system

Apparatus for recording and collecting usage and other statistical data from components of a cable data network comprises a network manager for maintaining and collecting the statistics. Internet protocol addresses are associated with components of the network. The component maintains a software agent that manages a statistics database. Responsive to a manager request generated at a service provider defined time interval, the component software agent provides the usage statistics to the network manager in real-time during an Internet session with a host. When the host to Internet or other data connection is torn down due to failure, disconnect or inactivity time-out, remaining usage statistics data is collected and the session duration updated with the time of tear down. Usage statistics collected include the amount of data transferred to / from a host, the amount of data that is discarded due to insufficient resource capacity and amount of data that cannot be corrected despite forward error correction used in a downstream high capacity channel to the host. Data traps may be defined and downloaded to components of the network for implementation. As a result, billing of users of the cable data network can be usage sensitive and determined based on actual data transferred (including credit given for errored data) and / or time sensitive based on session duration.
Owner:CISCO TECH INC

Method for controlling errors in link layer in wideband wireless communication and computer readable media therefor

A method for controlling errors in a wireless link layer using a simultaneous multiple copy scheme and an adaptive forward error correction (FEC) scheme in a wideband wireless communication is provided. The method for controlling errors in a link layer in wideband wireless communication using an automatic repeat request (ARQ) scheme, in which a wideband wireless channel is used for communication between a first node and a second node, includes the steps of (a) estimating the error ratio of a forward (a direction in which a cell is transmitted from the first node to the second node) channel using the state of a backward (a direction in which a cell is transmitted from the second node to the first node) channel, and transmitting a cell, in which a forward error correction (FEC) code having an encoding ratio that varies depending on the estimated error ratio is included in a protocol data unit (PDU) of a wireless link layer, through the forward channel and (b) re-transmitting the copy of a cell transmitted in the step (a), when feedback information that indicates that an error exists in the cell transmitted in the step (a) is received through the backward channel. It is possible to reduce the number of times of re-transmission by improving the probability of correcting forward errors using more error controlling bits as the state of the channel is worse and to minimize the waste of resources using less error controlling bits as the state of the channel is better, to thus obtain the optimal performance and guarantee the minimum delay time.
Owner:SAMSUNG ELECTRONICS CO LTD

Adaptive information delivery system using FEC feedback

A method and apparatus for optimizing the data transfer rate over a transport layer (i.e., communication link) such as the Internet is provided. Initially the data is prepared for transmission by a transfer rate controller, then the data is encoded by a Forward Error Correction (FEC) encoder. After the data has been transferred over the transport layer, the quality of the data transfer link is assessed by an FEC decoder that determines if any errors occurred during data transfer and if errors are detected, the magnitude of the errors (i.e., FEC-correctable packets, FEC-uncorrectable packets). This information is used to generate a feedback message which is used by the transfer rate controller to adjust and optimize the data transfer rate for the link quality as determined at that point in time. By continually monitoring and assessing link quality and providing feedback to the transfer rate controller, the transfer rate can be continually adapted to the varying link quality. In addition to generating feedback used by the transfer rate controller to optimize data transfer rate, the FEC decoder can generate feedback that is used by the FEC encoder to optimize the FEC algorithm. If desired, feedback from the FEC decoders within the link layer demodulator and/or feedback from the receiver can be used to augment the feedback generated by the FEC decoder.
Owner:TERAYON COMM SYST

Tuning scheme for code division multiplex broadcasting system

A CDM satellite transmission system is disclosed that broadcasts programming content, such as audio and video information, using one or more geo-synchronous satellites based on Code Division Multiple Access technology. Forward error correction coding and interleaving are used prior to broadcasting the signals over the CDM channel to account for signal loss due to short-term fading. The CDM satellite transmission system provides a tuning channel corresponding to each program channel that reduces the delay when a mobile receiver is first tuned to a selected program channel. The tuning channel utilizes a shorter interleaver length, if any, than the corresponding primary program channel. The CDM satellite transmission system transmits a delayed version of a program signal with the on-time version of the audio output to accommodate uninterrupted reception in the event of such a blockage. In one implementation of the invention, the core layer, C(n), of the delayed version of the audio output of a scalable audio coding scheme is utilized as the tuning channel. The core layer, C1(n), and enhancement layers, E1(n), of the on-time signal and the enhancement layers, E2(n), of the delayed-time signal employ a representative block interleaver having a duration of four seconds. The tuning channel (C2(n), of the delayed-time signal) employs a representative block interleaver having a duration of 500 milliseconds.
Owner:AVAGO TECH INT SALES PTE LTD

Vector network analyzer applique for adaptive communications in wireless networks

A test signal generator at a transmitter station and a facsimile generator at a receiver station go through an acquisition and tracking process which aligns the two signals so that a logical processor can compute the frequency transfer function of the entire propagation path for use in an adaptive, concurrently sent communication signal. The frequency transfer function is conveyed back to the transmit end via a control channel permitting an adaptivity function at the transmit end to influence subsequent selection of communication parameters, among which are typically transmitted data rate, selection of modulation, selection of forward error correcting coding, and selection of frequency band for transmission. The same measurement is conveyed to an adaptivity function at the receive end for use in the communications receiver to select demodulator variables such as gain control, and equalization of amplitude and phase, versus frequency. The adaptivity function also permits interspersing of reverse-direction communications over the same frequency bands in a time-share mode between forward-direction and reverse-direction communication with the measurement signals having to be transmitted in only one direction. An alternate embodiment invention of this type is described which is additionally useful for mobile communications channels. Another variation embodiment is described for pure propagation measurements only, absent conveyance of end-user information.
Owner:SARABAND WIRELESS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products