Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4406 results about "Time signal" patented technology

A time signal is a visible, audible, mechanical, or electronic signal used as a reference to determine the time of day. Church bells or voices announcing hours of prayer gave way to automatically operated chimes on public clocks; however, audible signals (even signal guns) have limited range. Busy seaports used a visual signal, the dropping of a ball, to allow mariners to check the chronometers used for navigation. The advent of electrical telegraphs allowed widespread and precise distribution of time signals from central observatories. Railways were among the first customers for time signals, which allowed synchronization of their operations over wide geographic areas. Dedicated radio time signal stations transmit a signal that allows automatic synchronization of clocks, and commercial broadcasters still include time signals in their programming.

Residue-compensating A/D converter

An analog-to-digital converter system [50D] processing an input signal, g, which can be either a discrete-time or a continuous-time signal. A first quantizer [154] generates a first digital signal, d0(k), representing the sum of the input signal, g, and a dithering signal, y0. A digital-to-analog converter [156] generates an analog feedback signal, alpha, representing accurately the first digital signal, d0(k). The DAC [156] may be linearized by the use of mismatch-shaping techniques. A filter [158] generates the dithering signal, y0, by selectively amplifying in the signal band the residue signal, r0, defined as the difference of the input signal, g, and the analog feedback signal, alpha. Optional signal paths [166][168] are used to minimize the closed-loop signal transfer function from g to y0, which ideally will be zero. An analog compensation signal, m0, which is described by a well-controlled relationship to the residue signal, r0, is extracted from the filter [158]. Ideally, the closed-loop signal transfer function from g to m0 will be zero, or at least small in the signal band. A second quantizer [160] converts the analog compensation signal, m0, into a second digital signal, dm0(k). The two digital signals, d0(k) and dm0(k), are filtered individually and then added to form the overall output signal, dg(k). The second digital filter [164] has a low signal-band gain, which implies that the sensitivity to signal-band errors caused by the second quantizer [160] will be low. The output signal, dg(k), is a highly-accurate high-resolution representation of the input signal, g. Circuit imperfections, such as mismatch, gain errors, and nonlinearities, will cause only noise-like errors having a very low spectral power density in the signal band.The invention facilitates the implementation of uncalibrated highly-linear high-resolution wide-bandwidth A/D converters [50D], e.g., for use in digital communication systems, such as xDSL modems and other demanding consumer-market products for which low cost is of the essence.
Owner:ANALOG DEVICES BV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products