Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5985results about "Medical simulation" patented technology

Systems and methods for processing sensor data

Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
Owner:DEXCOM

Systems and methods for processing sensor data

Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
Owner:DEXCOM

Systems and methods for processing sensor data

Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
Owner:DEXCOM INC

Systems and methods for processing sensor data

Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
Owner:DEXCOM

Systems and methods for processing sensor data

Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
Owner:DEXCOM

Man machine interfaces and applications

Affordable methods and apparatus are disclosed for inputting position, attitude (orientation) or other object characteristic data to computers for the purpose of Computer Aided Design, Painting, Medicine, Teaching, Gaming, Toys, Simulations, Aids to the disabled, and internet or other experiences. Preferred embodiments of the invention utilize electro-optical sensors, and particularly TV Cameras, providing optically inputted data from specialized datum's on objects and / or natural features of objects. Objects can be both static and in motion, from which individual datum positions and movements can be derived, also with respect to other objects both fixed and moving. Real-time photogrammetry is preferably used to determine relationships of portions of one or more datums with respect to a plurality of cameras or a single camera processed by a conventional PC.
Owner:PRYOR TIMOTHY R +1

System and method for dynamically adjusting patient therapy

A system and method of managing therapy provided to patients in an institution. The system monitors all aspects of the medication delivery to a patient, as well as other information related to the patient, such as values of vital signs, laboratory results and patient factors such as history, diagnosis, allergies and the like. The system includes one or more databases of information, including institutionally developed rules, guidelines and protocol representing the best medical practices of the institution. The system provides alerts and / or recommendations based on the application of the rules to the information being monitored, and alerts care givers accordingly, providing for dynamic adjustment of the patient's therapy. The system also monitors the status of the alerts, and if no action is taken in a selected period of time, may escalate the priority of the alert and / or halt the delivery of medication to the patient until the alert is resolved.
Owner:CAREFUSION 303 INC

Computer-aided-design of skeletal implants

The present invention is directed to a computer aided design method for producing an implant for a patient prior to operation comprising the steps of: generating data with a non-invasive 3D (3-dimensional) scan of the patient's defect site that digitally represents the area that will receive the implant; designing and validating an implant on a computer based on digital data generated from a volume image of the patient; and fabricating the implant based solely on the implant design data generated on computer.
Owner:OSTEOPLASTICS

Method for advising patients concerning doses of insulin

A method for guiding a user to select a dose of insulin, including the steps of calculating a firsts pecific dose of insulin by applying information provided by the user to an insulin dose calculation algorithm, wherein such information includes at least the user's current blood glucose level and the user's desired blood glucose level, calculating at least a second specific dose of insulin that is different from the first specific dose, and presenting to the user a range of doses comprising at least two of the specific doses.
Owner:INSULET CORP

Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data

A method, system, and computer program product related to the diagnosis of diabetes, and is directed to predicting the long-term risk of hyperglycemia, and the long-term and short-term risks of severe hypoglycemia in diabetics, based on blood glucose readings collected by a self-monitoring blood glucose device. The method, system, and computer program product pertain directly to the enhancement of existing home blood glucose monitoring devices, by introducing an intelligent data interpretation component capable of predicting both HbA1c and periods of increased risk of hypoglycemia, and to the enhancement of emerging continuous monitoring devices by the same features. With these predictions the diabetic can take steps to prevent the adverse consequences associated with hyperglycemia and hypoglycemia.
Owner:UNIV OF VIRGINIA ALUMNI PATENTS FOUND +1

Method and apparatus for predicting the risk of hypoglycemia

The invention relates to a method which utilizes blood glucose (“BG”) sampling, insulin infusion / injection records, heart rate (“HR”) information and heart rate varability (“HRV”) information to estimate BG in the near future and to estimate of the risk of the onset of hypoglycemia. The invention also relates to an apparatus for predicting BG levels and for assessing the risk of the onset of hypoglycemia in the near future. The invention is based on two predetermined bio-mathematical routines: a network model of BG fluctuations and a BG profile for assessment of the risk of hypoglycemia.
Owner:UNIV OF VIRGINIA ALUMNI PATENTS FOUND

Virtual patient software system for educating and treating individuals with diabetes

A system to assist an individual in developing a therapy in diabetes treatment of a patient includes a user interface control module, a simulation engine, a charting and display module. The user interface control module receives an input related to the patient and captures a current time of the simulation. The simulation engine receives the input, generates a plurality of blood glucose readings for the patient up to the current time of the simulation based on the input, and to transfers the plurality of blood glucose readings. The charting and display module receives the plurality of blood glucose readings and display the plurality of blood glucose readings. The simulation engine receives patient parameters from a patient parameter library based on a selected patient model.
Owner:MEDTRONIC MIMIMED INC

Operatively tuning implants for increased performance

A method for preoperatively characterizing an individual patient's biomechanic function in preparation of implanting a prosthesis is provided. The method includes subjecting a patient to various activities, recording relative positions of anatomy during said various activities, measuring force environments responsive to said patient's anatomy and affected area during said various activities, characterizing the patient's biomechanic function from said relative positions and corresponding force environments, inputting the measured force environments, relative positions of knee anatomy, and patient's biomechanic function characterization into one or more computer simulation models, inputting a computer model of the prosthesis into said one or more computer simulation models, and manipulating the placement of the prosthesis in the computer simulation using said patient's biomechanic function characterization and said computer model of the prosthesis to approximate a preferred biomechanical fit of the prosthesis.
Owner:SMITH & NEPHEW INC

Total joint arthroplasty system

A method and system for performing a total joint arthroplasty procedure on a patient's damaged bone region. A CT image or other suitable image is formed of the damaged bone surfaces, and location coordinate values (xn,yn,zn) are determined for a selected sequence of bone surface locations using the CT image data. A mathematical model z=f(x,y) of a surface that accurately matches the bone surface coordinates at the selected bone spice locations, or matches surface normal vector components at selected bone surface locations, is determined. The model provides a production file from which a cutting jig and an implant device (optional), each patient-specific and having controllable alignment, are fabricated for the damaged bone by automated processing. At this point, the patient is cut open (once), the cutting jig and a cutting instrument are used to remove a selected portion of the bone and to provide an exposed planar surface, the implant device is optionally secured to and aligned with the remainder of the bone, and the patient's incision is promptly repaired.
Owner:HOWMEDICA OSTEONICS CORP

Method, system, and computer program product for the processing of self-monitoring blood glucose(smbg)data to enhance diabetic self-management

A method, system, and computer program product related to the maintenance of optimal control of diabetes, and is directed to predicting the long-term exposure to hyperglycemia, and the long-term and short-term risks of severe or moderate hypoglycemia in diabetics, based on blood blucose readings collected by a self-monitoring blood glucose device. The method, system, and computer program product pertain directly to the enhancement of existing home blood glucose monitoring devices, by introducing an intelligent data interpretation component capable of predicting both HbA1c and periods of increased risk of hypoglycemia, and to the enhancement of emerging continuous monitoring devices by the same features. With these predictions the diabetic can take steps to prevent the adverse consequences associated with hyperglycemia and hypoglycemia.
Owner:UNIV OF VIRGINIA ALUMNI PATENTS FOUND

Method and system for patient-specific modeling of blood flow

Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
Owner:HEARTFLOW

Interactive user interfaces for robotic minimally invasive surgical systems

In one embodiment of the invention, a method for a minimally invasive surgical system is disclosed. The method includes capturing and displaying camera images of a surgical site on at least one display device at a surgeon console; switching out of a following mode and into a masters-as-mice (MaM) mode; overlaying a graphical user interface (GUI) including an interactive graphical object onto the camera images; and rendering a pointer within the camera images for user interactive control. In the following mode, the input devices of the surgeon console may couple motion into surgical instruments. In the MaM mode, the input devices interact with the GUI and interactive graphical objects. The pointer is manipulated in three dimensions by input devices having at least three degrees of freedom. Interactive graphical objects are related to physical objects in the surgical site or a function thereof and are manipulatable by the input devices.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE +1

Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices

Disclosed herein is a method of generating a computerized bone model representative of at least a portion of a patient bone in a pre-degenerated state. The method includes: generating at least one image of the patient bone in a degenerated state; identifying a reference portion associated with a generally non-degenerated portion of the patient bone; identifying a degenerated portion associated with a generally degenerated portion of the patient bone; and using information from at least one image associated with the reference portion to modify at least one aspect associated with at least one image associated the generally degenerated portion. The method may further include employing the computerized bone model representative of the at least a portion of the patient bone in the pre-degenerated state in defining manufacturing instructions for the manufacture of a customized arthroplasty jig. Also disclosed herein is a customized arthroplasty jig manufactured according to the above-described method. The customized arthroplasty jig is configured to facilitate a prosthetic implant restoring a patient joint to a natural alignment. The prosthetic implant may be for a total joint replacement or partial joint replacement. The patient joint may be a variety of joints, including, but not limited to, a knee joint.
Owner:HOWMEDICA OSTEONICS CORP

Computer interfaces including physiologically guided avatars

This invention provides user interfaces that more intuitively display physiological data obtained from physiological monitoring of one or more subjects. Specifically, the user interfaces of this invention create and display one or more avatars having behaviors guided by physiological monitoring data. The monitoring data is preferably obtained when the subject is performing normal tasks without substantial restraint. This invention provides a range of implementations that accommodate user having varying processing and graphics capabilities, e.g., from handheld electronic devices to ordinary PC-type computers and to systems with enhanced graphics capabilities.
Owner:ADIDAS

Interactive orthodontic care system based on intra-oral scanning of teeth

Interactive, computer based orthodontist treatment planning, appliance design and appliance manufacturing is described. A scanner is described which acquires images of the dentition which are converted to three-dimensional frames of data. The data from the several frames are registered to each other to provide a complete three-dimensional virtual model of the dentition. Individual tooth objects are obtained from the virtual model. A computer-interactive software program provides for treatment planning, diagnosis and appliance from the virtual tooth models. A desired occlusion for the patient is obtained from the treatment planning software. The virtual model of the desired occlusion and the virtual model of the original dentition provide a base of information for custom manufacture of an orthodontic appliance. A variety of possible appliance and appliance manufacturing systems are contemplated, including customized archwires and customized devices for placement of off-the shelf brackets on the archwires, and removable orthodontic appliances.
Owner:ORAMETRIX

Computer-aided-design of skeletal implants

The present invention is directed to a computer aided design method for producing an implant for a patient prior to operation comprising the steps of: generating data with a non-invasive 3D (3-dimensional) scan of the patient's defect site that digitally represents the area that will receive the implant; designing and validating an implant on a computer based on digital data generated from a volume image of the patient; and fabricating the implant based solely on the implant design data generated on computer.
Owner:OSTEOPLASTICS

Method and apparatus for glucose control and insulin dosing for diabetics

ActiveUS20050272640A1Ensure robustnessAccurately predicting insulin bolus dosagesPeptide/protein ingredientsDrug and medicationsPhysiologyMonitors blood glucose
A computer implemented method and associated apparatus for the combined control of insulin bolus dosing and basal delivery for the goal of achieving normal glycemic response to meals, exercise, stressors, and other perturbations to blood glucose levels. A run-to-run algorithm is used to monitor blood glucose levels and adjust insulin delivery as conditions are varied.
Owner:RGT UNIV OF CALIFORNIA

Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds

The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms / alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
Owner:SOTERA WIRELESS

System and method for prosthetic fitting and balancing in joints

A system and method for prosthesis fitting in joints comprising an artificial condyle and a spacer which cooperates with the condyle to form an artificial joint. The spacer embedded with at least one sensor which is responsive to a force generated between the condyle and the spacer. The artificial joint is adapted to move between a flexed position and an extended position defining a range of motion. The sensor is responsive to the force and generates an output representative of that force. The output is transmitted, either wirelessly or other, to a processor which utilizes an analysis program to display a representation of the forces applied. A practitioner utilizing the displayed analysis may intraoperatively determine the adjustments and balancing required within the artificial joint. The system may also utilize a ligament tension sensor which generates data representative of tension on a ligament of the artificial joint, and a joint angle sensor responsive to the range of motion of the artificial joint. The processor may be adapted to store the outputted sensor data to provide the practitioner with statistically relevant historical data.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS

Interactive user interfaces for robotic minimally invasive surgical systems

In one embodiment of the invention, a method for a minimally invasive surgical system is disclosed. The method includes capturing and displaying camera images of a surgical site on at least one display device at a surgeon console; switching out of a following mode and into a masters-as-mice (MaM) mode; overlaying a graphical user interface (GUI) including an interactive graphical object onto the camera images; and rendering a pointer within the camera images for user interactive control. In the following mode, the input devices of the surgeon console may couple motion into surgical instruments. In the MaM mode, the input devices interact with the GUI and interactive graphical objects. The pointer is manipulated in three dimensions by input devices having at least three degrees of freedom. Interactive graphical objects are related to physical objects in the surgical site or a function thereof and are manipulatable by the input devices.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE +1

Method and system to create products

Systems and methods for creating fully custom products from scratch without exclusive use of off-the-shelf or pre-specified components. A system for creating custom products includes an image capture device for capturing image data and / or measurement data of a user. A computer is communicatively coupled with the image capture device and configured to construct an anatomic model of the user based on the captured image data and / or measurement data. The computer provides a configurable product model and enables preview and automatic or user-guided customization of the product model. A display is communicatively coupled with the computer and displays the custom product model superimposed on the anatomic model or image data of the user. The computer is further configured to provide the customized product model to a manufacturer for manufacturing eyewear for the user in accordance with the customized product model. The manufacturing system is configured to interpret the product model and prepare instructions and control equipment for the manufacturing of the customized product.
Owner:BIS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products