Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

16412 results about "Mathematical model" patented technology

A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, biology, earth science, chemistry) and engineering disciplines (such as computer science, electrical engineering), as well as in the social sciences (such as economics, psychology, sociology, political science).

Wave front sensing method and apparatus

A new way of mixing instrumental and digital means is described for the general field of wave front sensing. The present invention describes the use, the definition and the utility of digital operators, called digital wave front operators (DWFO) or digital lenses (DL), specifically designed for the digital processing of wave fronts defined in amplitude and phase. DWFO are of particular interest for correcting undesired wave front deformations induced by instrumental defects or experimental errors. DWFO may be defined using a mathematical model, e.g. a polynomial function, which involves coefficients. The present invention describes automated and semi-automated procedures for calibrating or adjusting the values of these coefficients. These procedures are based on the fitting of mathematical models on reference data extracted from specific regions of a wave front called reference areas, which are characterized by the fact that specimen contributions are a priori known in reference areas. For example, reference areas can be defined in regions where flat surfaces of a specimen produce a constant phase function. The present invention describes also how DWFO can be defined by extracting reference data along one-dimensional (1D) profiles. DWFO can also be defined in order to obtain a flattened representation of non-flat area of a specimen. Several DWFO or DL can be combined, possibly in addition with procedures for calculating numerically the propagation of wave fronts. A DWFO may also be defined experimentally, e.g. by calibration procedures using reference specimens. A method for generating a DWFO by filtering in the Fourier plane is also described. All wave front sensing techniques may benefit from the present invention. The case of a wave front sensor based on digital holography, e.g. a digital holographic microscope (DHM), is described in more details. The use of DWFO improves the performance, in particular speed and precision, and the ease of use of instruments for wave front sensing. The use of DWFO results in instrumental simplifications, costs reductions, and enlarged the field of applications. The present invention defines a new technique for imaging and metrology with a large field of applications in material and life sciences, for research and industrial applications.
Owner:LYNCEE TEC

Wave Front Sensing Method and Apparatus

A new way of mixing instrumental and digital means is described for the general field of wave front sensing. The present invention describes the use, the definition and the utility of digital operators, called digital wave front operators (DWFO) or digital lenses (DL), specifically designed for the digital processing of wave fronts defined in amplitude and phase. DWFO are of particular interest for correcting undesired wave front deformations induced by instrumental defects or experimental errors. DWFO may be defined using a mathematical model, e.g. a polynomial function, which involves coefficients. The present invention describes automated and semi-automated procedures for calibrating or adjusting the values of these coefficients. These procedures are based on the fitting of mathematical models on reference data extracted from specific regions of a wave front called reference areas, which are characterized by the fact that specimen contributions are a priori known in reference areas. For example, reference areas can be defined in regions where flat surfaces of a specimen produce a constant phase function. The present invention describes also how DWFO can be defined by extracting reference data along one-dimensional (1D) profiles. DWFO can also be defined in order to obtain a flattened representation of non-flat area of a specimen. Several DWFO or DL can be combined, possibly in addition with procedures for calculating numerically the propagation of wave fronts. A DWFO may also be defined experimentally, e.g. by calibration procedures using reference specimens. A method for generating a DWFO by filtering in the Fourier plane is also described. All wave front sensing techniques may benefit from the present invention. The case of a wave front sensor based on digital holography, e.g. a digital holographic microscope (DHM), is described in more details. The use of DWFO improves the performance, in particular speed and precision, and the ease of use of instruments for wave front sensing. The use of DWFO results in instrumental simplifications, costs reductions, and enlarged the field of applications. The present invention defines a new technique for imaging and metrology with a large field of applications in material and life sciences, for research and industrial applications.
Owner:LYNCEE TEC

Medical device for predicting a user's future glycemic state

A medical device for predicting a user's future glycemic state includes a memory module, a processor module and a user alert module. The memory module is configured to receive and store a plurality of glucose concentrations as a function of time that were generated by a user's use of a continuous glucose monitor. The processor module is configured to derive first and second glucose prediction equations that are fits to the plurality of glucose concentrations stored in the memory module with the fits being based on first and second mathematical models, respectively. The processor module is also configured to calculate first and second predicted glucose concentrations at a future time using the first and second glucose prediction equations, respectively, and to also calculate an average predicted glucose concentration and a merit index based on the first and second predicted glucose calculations. The processor module is further configured to input the plurality of glucose concentrations as a function of time, the average predicted glucose concentration and the merit index into a trained model (e.g., a Hidden Markov Model) that outputs a set of glucose concentration probabilities for the future time and to then predict the user's future glycemic state based on the set of glucose concentration probabilities. The user alert module is configured to alert the user in a manner dependent on the predicted user's future glycemic state.
Owner:LIFESCAN IP HLDG LLC

Medical device for predicting a user's future glycemic state

A medical device for predicting a user's future glycemic state includes a memory module, a processor module and a user alert module. The memory module is configured to receive and store a plurality of glucose concentrations as a function of time that were generated by a user's use of a continuous glucose monitor. The processor module is configured to derive first and second glucose prediction equations that are fits to the plurality of glucose concentrations stored in the memory module with the fits being based on first and second mathematical models, respectively. The processor module is also configured to calculate first and second predicted glucose concentrations at a future time using the first and second glucose prediction equations, respectively, and to also calculate an average predicted glucose concentration and a merit index based on the first and second predicted glucose calculations. The processor module is further configured to input the plurality of glucose concentrations as a function of time, the average predicted glucose concentration and the merit index into a trained model (e.g., a Hidden Markov Model) that outputs a set of glucose concentration probabilities for the future time and to then predict the user's future glycemic state based on the set of glucose concentration probabilities. The user alert module is configured to alert the user in a manner dependent on the predicted user's future glycemic state.
Owner:LIFESCAN IP HLDG LLC

Multiple purpose, portable apparatus for measurement, analysis and diagnosis

The present invention pertains to a portable apparatus for quantitatively measuring the concentration of specific substances in test samples of a lateral flow or microplate assay in medical, biomedical and chemical applications, and for making subsequent analysis and diagnosis. The portable apparatus includes a sample tray for carrying and aligning the test sample in the apparatus; a enclosure that may also serves as the frame of the apparatus; a digital image acquisition system that is used to obtain the digital image of the test sample on the sample tray; and a data display, processing, and analysis unit that is a general purpose or dedicated computer, such as a handheld computer (HHC), a pocket personal computer (PPC), a personal digital assistant (PDA), a palm-top computer, a laptop computer, or a dedicated microprocessor and associated hardware, for measuring the concentration of specific substances in the test sample, and making subsequent analysis and diagnosis, based on the measurement, statistical data, prior knowledge and mathematical model. The stated enclosure and frame, the digital image acquisition system, and the data display, processing and analysis unit are integrated to form the portable apparatus for various applications. The integrated apparatus of this invention, with a possible name—Portable Intelligent Multi-Diagnoser (PIMD), thus forms a portable and multiple-purpose tool for measuring the concentration of specific substances in test samples, and making subsequent analysis and diagnosis in a variety of settings, such as a mobile site, point of care or near patient care, and small laboratories.
Owner:MA JIE +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products