Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

32246 results about "Nuclear medicine" patented technology

Nuclear medicine is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear medicine imaging, in a sense, is "radiology done inside out" or "endoradiology" because it records radiation emitting from within the body rather than radiation that is generated by external sources like X-rays. In addition, nuclear medicine scans differ from radiology as the emphasis is not on imaging anatomy but the function and for such reason, it is called a physiological imaging modality. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) scans are the two most common imaging modalities in nuclear medicine.

System and method for determining the location of a catheter during an intra-body medical procedure

A system and method of displaying at least one point-of-interest of a body during an intra-body medical procedure. The method is effected by (a) establishing a location of the body; (b) establishing a location of an imaging instrument being for imaging at least a portion of the body; (c) defining at least one projection plane being in relation to a projection plane of the imaging instrument; (d) acquiring at least one point-of-interest of the body; and (c) projection said at least one point-of-interest on said at least one projection plane; such that, in course of the procedure, the locations of the body and the imaging instrument are known, thereby the at least one point-of-interest is projectable on the at least one projection plane even in cases whereby a relative location of the body and the imaging instrument are changed.
Owner:TYCO HEALTHCARE GRP LP

Navigation system for cardiac therapies

An image guided navigation system for navigating a region of a patient includes an imaging device, a tracking device, a controller, and a display. The imaging device generates images of the region of a patient. The tracking device tracks the location of the instrument in a region of the patient. The controller superimposes an icon representative of the instrument onto the images generated from the imaging device based upon the location of the instrument. The display displays the image with the superimposed instrument. The images and a registration process may be synchronized to a physiological event. The controller may also provide and automatically identify an optimized site to navigate the instrument to.
Owner:MEDTRONIC NAVIGATION

Methods and apparatuses for image guided medical procedures

Methods and apparatuses for the image guidance and documentation of medical procedures. One embodiment includes combining small field of view images into a recorded image of with a large field of view and aligning the small field of view real time image with the recorded image through correlation of imaging data. A location and orientation determination system may be used to track the imaging system and provide a starting set of image alignment parameters and / or provide change updates to a set of image alignment parameters, which is then further improved through correlating imaging data. The recorded image may be selected according to real time measurement of a cardiac parameter during an image guided cardiac procedure. Image manipulations planned based on the recorded image can be stored and applied to the real time information. The position of the medical device may be determined and recorded through manipulating a cursor in a 3-D image space shown in two non-parallel views.
Owner:ABBOTT CARDIOVASCULAR

Methods, Devices, Systems, Circuits and Associated Computer Executable Code for Detecting and Predicting the Position, Orientation and Trajectory of Surgical Tools

The present invention includes methods, devices, systems, circuits and associated computer executable code for detecting and predicting the position and trajectory of surgical tools. According to some embodiments of the present invention, images of a surgical tool within or in proximity to a patient may be captured by a radiographic imaging system. The images may be processed by associated processing circuitry to determine and predict position, orientation and trajectory of the tool based on 3D models of the tool, geometric calculations and mathematical models describing the movement and deformation of surgical tools within a patient body.
Owner:ORTHOPEDIC NAVIGATION

Magnetically guided atherectomy

Atherectomy device are guided by and manipulated by externally applied magnetic fields to treat total or partial occlusions of a patient's vasculature.
Owner:STEREOTAXIS

Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter

Devices, systems, and methods for treating atherosclerotic lesions and other disease states, particularly for treatment of vulnerable plaques, can incorporate optical coherence tomography or other imaging techniques which allow a structure and location of an eccentric plaque to be characterized. Remodeling and / or ablative laser energy can then be selectively and automatically directed to the appropriate plaque structures, often without imposing mechanical trauma to the entire circumference of the lumen wall.
Owner:VESSIX VASCULAR

Lithographic Focus and Dose Measurement Using A 2-D Target

In order to determine whether an exposure apparatus is outputting the correct dose of radiation and its projection system is focusing the radiation correctly, a test pattern is used on a mask for printing a specific marker onto a substrate. This marker is then measured by an inspection apparatus, such as a scatterometer, to determine whether there are errors in focus and dose and other related properties. The test pattern is configured such that changes in focus and dose may be easily determined by measuring the properties of a pattern that is exposed using the mask. The test pattern may be a 2D pattern where physical or geometric properties, e.g., pitch, are different in each of the two dimensions. The test pattern may also be a one-dimensional pattern made up of an array of structures in one dimension, the structures being made up of at least one substructure, the substructures reacting differently to focus and dose and giving rise to an exposed pattern from which focus and dose may be determined.
Owner:ASML NETHERLANDS BV

Joint and cartilage diagnosis, assessment and modeling

Methods are disclosed for assessing the condition of a cartilage in a joint and assessing cartilage loss, particularly in a human knee. The methods include converting an image such as an MRI to a three dimensional map of the cartilage. The cartilage map can be correlated to a movement pattern of the joint to assess the affect of movement on cartilage wear. Changes in the thickness of cartilage over time can be determined so that therapies can be provided. The amount of cartilage tissue that has been lost, for example as a result of arthritis, can be estimated.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Method and system for object detection in digital images

An object detection system for detecting instances of an object in a digital image includes an image integrator and an object detector, which includes a classifier (classification function) and image scanner. The image integrator receives an input image and calculates an integral image representation of the input image. The image scanner scans the image in same sized subwindows. The object detector uses a cascade of homogenous classification functions or classifiers to classify the subwindows as to whether each subwindow is likely to contain an instance of the object. Each classifier evaluates one or more features of the object to determine the presence of such features in a subwindow that would indicate the likelihood of an instance of the object in the subwindow.
Owner:HEWLETT PACKARD DEV CO LP

Optical image-based position tracking for magnetic resonance imaging applications

An optical image-based tracking system determines the position and orientation of objects such as biological materials or medical devices within or on the surface of a human body undergoing Magnetic Resonance Imaging (MRI). Three-dimensional coordinates of the object to be tracked are obtained initially using a plurality of MR-compatible cameras. A calibration procedure converts the motion information obtained with the optical tracking system coordinates into coordinates of an MR system. A motion information file is acquired for each MRI scan, and each file is then converted into coordinates of the MRI system using a registration transformation. Each converted motion information file can be used to realign, correct, or otherwise augment its corresponding single MR image or a time series of such MR images. In a preferred embodiment, the invention provides real-time computer control to track the position of an interventional treatment system, including surgical tools and tissue manipulators, devices for in vivo delivery of drugs, angioplasty devices, biopsy and sampling devices, devices for delivery of RF, thermal energy, microwaves, laser energy or ionizing radiation, and internal illumination and imaging devices, such as catheters, endoscopes, laparoscopes, and like instruments. In other embodiments, the invention is also useful for conventional clinical MRI events, functional MRI studies, and registration of image data acquired using multiple modalities.
Owner:SUNNYBROOK & WOMENS COLLEGE HEALTH SCI CENT

Systems and methods for synthesizing high resolution images using super-resolution processes

Systems and methods in accordance with embodiments of the invention are disclosed that use super-resolution (SR) processes to use information from a plurality of low resolution (LR) images captured by an array camera to produce a synthesized higher resolution image. One embodiment includes obtaining input images using the plurality of imagers, using a microprocessor to determine an initial estimate of at least a portion of a high resolution image using a plurality of pixels from the input images, and using a microprocessor to determine a high resolution image that when mapped through the forward imaging transformation matches the input images to within at least one predetermined criterion using the initial estimate of at least a portion of the high resolution image. In addition, each forward imaging transformation corresponds to the manner in which each imager in the imaging array generate the input images, and the high resolution image synthesized by the microprocessor has a resolution that is greater than any of the input images.
Owner:FOTONATION LTD

Medical imaging probe with rotary encoder

ActiveUS20080177139A1High resolutionAccurately measuring and estimating rotational velocityUltrasonic/sonic/infrasonic diagnosticsSurgeryRotary encoderMedical imaging
The present invention provides minimally invasive imaging probe having an optical encoder integrated therewith for accurately measuring or estimating the rotational velocity near the distal end of the medical device, such as an imaging probe which undergoes rotational movement during scanning of surrounding tissue in bodily lumens and cavities.
Owner:SUNNYBROOK HEALTH SCI CENT

Cantilevered gantry apparatus for x-ray imaging

An x-ray scanning imaging apparatus with a rotatably fixed generally O-shaped gantry ring, which is connected on one end of the ring to support structure, such as a mobile cart, ceiling, floor, wall, or patient table, in a cantilevered fashion. The circular gantry housing remains rotatably fixed and carries an x-ray image-scanning device that can be rotated inside the gantry around the object being imaged either continuously or in a step-wise fashion. The ring can be connected rigidly to the support, or can be connected to the support via a ring positioning unit that is able to translate or tilt the gantry relative to the support on one or more axes. Multiple other embodiments exist in which the gantry housing is connected on one end only to the floor, wall, or ceiling. The x-ray device is particularly useful for two-dimensional multi-planar x-ray imaging and / or three-dimensional computed tomography (CT) imaging applications
Owner:MEDTRONIC NAVIGATION INC

Videotactic and audiotactic assisted surgical methods and procedures

The present invention provides video and audio assisted surgical techniques and methods. Novel features of the techniques and methods provided by the present invention include presenting a surgeon with a video compilation that displays an endoscopic-camera derived image, a reconstructed view of the surgical field (including fiducial markers indicative of anatomical locations on or in the patient), and / or a real-time video image of the patient. The real-time image can be obtained either with the video camera that is part of the image localized endoscope or with an image localized video camera without an endoscope, or both. In certain other embodiments, the methods of the present invention include the use of anatomical atlases related to pre-operative generated images derived from three-dimensional reconstructed CT, MRI, x-ray, or fluoroscopy. Images can furthermore be obtained from pre-operative imaging and spacial shifting of anatomical structures may be identified by intraoperative imaging and appropriate correction performed.
Owner:GILDENBERG PHILIP L

Vascular image processing

A method of estimating a position of a foreign object in the body, comprising: (a) providing a 3D data set of at least one blood vessel; (b) acquiring at least one 2D projection image of the vessel including the object; (c) registering the 2D projection image of the vessel to the 3D data set; and (d) using the registration to estimate a 3D position of said object restricted to be in a blood vessel, according to said 3D data set.
Owner:SHINA SYST

Imaging probe with combined ultrasounds and optical means of imaging

The present invention provides an imaging probe for imaging mammalian tissues and structures using high resolution imaging, including high frequency ultrasound and optical coherence tomography. The imaging probes structures using high resolution imaging use combined high frequency ultrasound (IVUS) and optical imaging methods such as optical coherence tomography (OCT) and to accurate co-registering of images obtained from ultrasound image signals and optical image, signals during scanning a region of interest.
Owner:SUNNYBROOK HEALTH SCI CENT

Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system

An apparatus and method for reconstructing image data for a region are described. A radiation source and multiple one-dimensional linear or two-dimensional planar area detector arrays located on opposed sides of a region angled generally along a circle centered at the radiation source are used to generate scan data for the region from a plurality of diverging radiation beams, i.e., a fan beam or cone beam. Individual pixels on the discreet detector arrays from the scan data for the region are reprojected onto a new single virtual detector array along a continuous equiangular arc or cylinder or equilinear line or plane prior to filtering and backprojecting to reconstruct the image data.
Owner:MEDTRONIC NAVIGATION

Customized prosthesis and method of designing and manufacturing a customized prosthesis by utilizing computed tomography data

A method of making an acetabular prosthesis includes acquiring a first set of data defining in three dimensions at least a portion of a bone of a patient. A second set of data is computed based upon the first set of data. The prosthesis is manufactured to include an acetabular cup and an attachment part extending therefrom. The manufacturing step includes the step of forming the attachment part based on the second set of data.
Owner:DEPUY PROD INC

Patient Matching Surgical Guide and Method for Using the Same

A system and method for developing customized apparatus for use in one or more surgical procedures is disclosed. The system and method incorporates a patient's unique anatomical features or morphology, which may be derived from capturing MRI data or CT data, to fabricate at least one custom apparatus. According to a preferred embodiment, the customized apparatus comprises a plurality of complementary surfaces based on a plurality of data points from the MRI or CT data. Thus, each apparatus may be matched in duplicate and oriented around the patient's own anatomy, and may further provide any desired axial alignments or insertional trajectories. In an alternate embodiment, the apparatus may further be aligned with at least one other apparatus used during the surgical procedure.
Owner:MIGHTY OAK MEDICAL INC

Thermographic Test Method and Testing Device for Carrying Out the Test Method

A thermographic test method locally resolves detection and identification of defects near the surface in a test object. A surface area of the test object is heated up. A series of thermographic images following one after another at a time interval is recorded within a heat propagation phase, each image representing a local temperature distribution in a surface region of the test object recorded by the image. Positionally correctly assigned temperature profiles are determined from the images, each positionally correctly assigned temperature profile being assigned to the same measuring region of the test object surface. Variations over time of temperature values are determined from the temperature profiles for a large number of measuring positions of the measuring region. These variations are evaluated on the basis of at least one evaluation criterion indicative of the heat flow in the measuring region.
Owner:INSTITUT DR FORSTER

Quantitative methods for obtaining tissue characteristics from optical coherence tomography images

InactiveUS20090306520A1Improve tissue type classificationCatheterDiagnostic recording/measuringUltrasound attenuationLight beam
A method and apparatus for determining properties of a tissue or tissues imaged by optical coherence tomography (OCT). In one embodiment the backscatter and attenuation of the OCT optical beam is measured and based on these measurements and indicium such as color is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion. The image is then displayed with the indicia and a user can then determine the tissue characteristics. In an alternative embodiment the tissue characteristics is classified automatically by a program given the combination of backscatter and attenuation values.
Owner:LIGHTLAB IMAGING

System and method of measuring disease severity of a patient before, during and after treatment

A system and method of obtaining serial biochemical, anatomical or physiological in vivo measurements of disease from one or more medical images of a patient before, during and after treatment, and measuring extent and severity of the disease is provided. First anatomical and functional image data sets are acquired, and form a first co-registered composite image data set. At least a volume of interest (ROI) within the first co-registered composite image data set is identified. The first co-registered composite image data set including the ROI is qualitatively and quantitatively analyzed to determine extent and severity of the disease. Second anatomical and functional image data sets are acquired, and form a second co-registered composite image data set. A global, rigid registration is performed on the first and second anatomical image data sets, such that the first and second functional image data sets are also globally registered. At least a ROI within the globally registered image data set using the identified ROI within the first co-registered composite image data set is identified. A local, non-rigid registration is performed on the ROI within the first co-registered composite image data set and the ROI within the globally registered image data set, thereby producing a first co-registered serial image data set. The first co-registered serial image data set including the ROIs is qualitatively and quantitatively analyzed to determine severity of the disease and / or response to treatment of the patient.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Multi-dimensional image reconstruction

Apparatus for radiation based imaging of a non-homogenous target area having distinguishable regions therein, comprises: an imaging unit configured to obtain radiation intensity data from a target region in the spatial dimensions and at least one other dimension, and an image four-dimension analysis unit analyzes the intensity data in the spatial dimension and said at least one other dimension in order to map the distinguishable regions. The system typically detects rates of change over time in signals from radiopharmaceuticals and uses the rates of change to identify the tissues. In a preferred embodiment, two or more radiopharmaceuticals are used, the results of one being used as a constraint on the other.
Owner:SPECTRUM DYNAMICS MEDICAL LTD

Imaging for use with moving organs

Apparatus is described for imaging a portion of a body of a subject that moves as a result of cyclic activity of a body system of the subject and that also undergoes additional motion. An imaging device acquires a plurality of image frames of the portion. A sensor senses a phase of the cyclic activity of the body system. A control unit generates a stabilized set of image frames of the portion by identifying a given phase of the cyclic activity, and outputting a set of the image frames corresponding to image frames of the portion acquired during the given phase, and by image tracking at least the set of image frames to reduce imaged motion of the portion associated with the additional motion. A display displays the stabilized set of image frames of the portion. Other embodiments are also described.
Owner:SYNC RX
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products