Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

225 results about "Functional image" patented technology

Computational method and system to perform empirical induction

The present invention is an improved computational method and system of empirical induction that can be used to arrive at generalized conclusions and make predictions involving longitudinal associations between and among variables and events. Empirical induction is used to gain scientific knowledge, to develop and evaluate treatments and other interventions, and to help make predictions and decisions. The invention, which is distinct from and often complementary to the statistical method, is applied to repeated measures and multiple time-series data and can be used to quantify, discover, analyze, and describe longitudinal associations for individual real and conceptual entities. Major improvements include provisions to define Boolean independent events and Boolean dependent events and to apply analysis parameters such as episode length and episode criterion for both independent and dependent variables, persistence after independent events, and delay and persistence after Boolean independent events. These improvements are in addition to levels of independent and dependent variables, delay after independent events, and provision to quantify benefit and harm across two or more dependent variables. Additional improvements include provisions to quantify longitudinal associations as functions of period or time and to compute values of predictive indices when there are two or more independent variables. Major applications and uses of the invention include data mining, the conduct of clinical trials of treatments for the management or control of chronic disorders, health-effect monitoring, the quantification and analysis internal control in adaptive systems, analyses of serial functional images, analyses of behavior and behavior modification, and use to create computerized devices and systems whose behavior can be modified by experience. The present invention is best implemented on the Internet.
Owner:BAGNE MILLER ENTERPRISES INC

System and method of measuring disease severity of a patient before, during and after treatment

A system and method of obtaining serial biochemical, anatomical or physiological in vivo measurements of disease from one or more medical images of a patient before, during and after treatment, and measuring extent and severity of the disease is provided. First anatomical and functional image data sets are acquired, and form a first co-registered composite image data set. At least a volume of interest (ROI) within the first co-registered composite image data set is identified. The first co-registered composite image data set including the ROI is qualitatively and quantitatively analyzed to determine extent and severity of the disease. Second anatomical and functional image data sets are acquired, and form a second co-registered composite image data set. A global, rigid registration is performed on the first and second anatomical image data sets, such that the first and second functional image data sets are also globally registered. At least a ROI within the globally registered image data set using the identified ROI within the first co-registered composite image data set is identified. A local, non-rigid registration is performed on the ROI within the first co-registered composite image data set and the ROI within the globally registered image data set, thereby producing a first co-registered serial image data set. The first co-registered serial image data set including the ROIs is qualitatively and quantitatively analyzed to determine severity of the disease and/or response to treatment of the patient.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Ingestible device platform for the colon

An ingestible pill platform for colon imaging is provided, designed to recognize its entry to the colon and expand in the colon, for improved imaging of the colon walls. On approaching the external anal sphincter muscle, the ingestible pill may contract or deform, for elimination. Colon recognition may be based on a structural image, based on the differences in diameters between the small intestine and the colon, and particularly, based on the semilunar fold structure, which is unique to the colon. Additionally or alternatively, colon recognition may be based on a functional image, based on the generally inflammatory state of the vermiform appendix. Additionally or alternatively, pH, flora, enzymes and (or) chemical analyses may be used to recognize the colon. The imaging of the colon walls may be functional, by nuclear-radiation imaging of radionuclide-labeled antibodies, or by optical-fluorescence-spectroscopy imaging of fluorescence-labeled antibodies. Additionally or alternatively, it may be structural, for example, by visual, ultrasound or MRI means. Due to the proximity to the colon walls, the imaging in accordance with the present invention is advantageous to colonoscopy or virtual colonoscopy, as it is designed to distinguish malignant from benign tumors and detect tumors even at their incipient stage, and overcome blood-pool background radioactivity.
Owner:SPECTRUM DYNAMICS MEDICAL LTD

Ingestible device platform for the colon

An ingestible pill platform for colon imaging is provided, designed to recognize its entry to the colon and expand in the colon, for improved imaging of the colon walls. On approaching the external anal sphincter muscle, the ingestible pill may contract or deform, for elimination. Colon recognition may be based on a structural image, based on the differences in diameters between the small intestine and the colon, and particularly, based on the semilunar fold structure, which is unique to the colon. Additionally or alternatively, colon recognition may be based on a functional image, based on the generally inflammatory state of the vermiform appendix. Additionally or alternatively, pH, flora, enzymes and (or) chemical analyses may be used to recognize the colon. The imaging of the colon walls may be functional, by nuclear-radiation imaging of radionuclide-labeled antibodies, or by optical-fluorescence-spectroscopy imaging of fluorescence-labeled antibodies. Additionally or alternatively, it may be structural, for example, by visual, ultrasound or MRI means. Due to the proximity to the colon walls, the imaging in accordance with the present invention is advantageous to colonoscopy or virtual colonoscopy, as it is designed to distinguish malignant from benign tumors and detect tumors even at their incipient stage, and overcome blood-pool background radioactivity.
Owner:SPECTRUM DYNAMICS MEDICAL LTD

Real-time nerve decoding system based on brain function features

The invention provides a real-time nerve decoding system based on brain function features. A real-time functional magnetic resonance imaging technology is used, the brain function features which are extracted on line are classified, and real-time nerve decoding is conducted on magnetic resonance functional images. The real-time nerve decoding system comprises a preprocessing module, a feature extraction module, a classification decoding module, a display and feedback module and a parameter configuration module. After the preprocessing module conducts on-line reading and format conversion on the magnetic resonance functional images, the signal to noise ratio of the images is improved through real-time head motion correction, spatial normalization and smoothness; then the feature extraction module is used for extracting the main ingredients of whole brain image signals to be used as the features; the classification decoding module conducts classification decoding on the features through a real-time support vector machine or a Gaussian process classifier, and the display and feedback module feeds the classification accuracy rate back to an examinee in real time. The real-time nerve decoding system based on the brain function features is of great application value to analyzing psychological traits, recognizing brain activities, improving cognitive functions and the like.
Owner:BEIJING NORMAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products