Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6300 results about "Lesion" patented technology

A lesion is any damage or abnormal change in the tissue of an organism, usually caused by disease or trauma. Lesion is derived from the Latin laesio "injury". Lesions may occur in plants as well as animals.

Multi-channel RF energy delivery with coagulum reduction

A system for efficient delivery of radio frequency (RF) energy to cardiac tissue with an ablation catheter used in catheter ablation, with new concepts regarding the interaction between RF energy and biological tissue. In addition, new insights into methods for coagulum reduction during RF ablation will be presented, and a quantitative model for ascertaining the propensity for coagulum formation during RF ablation will be introduced. Effective practical techniques a represented for multichannel simultaneous RF energy delivery with real-time calculation of the Coagulum Index, which estimates the probability of coagulum formation. This information is used in a feedback and control algorithm which effectively reduces the probability of coagulum formation during ablation. For each ablation channel, electrical coupling delivers an RF electrical current through an ablation electrode of the ablation catheter and a temperature sensor is positioned relative to the ablation electrode for measuring the temperature of cardiac tissue in contact with the ablation electrode. A current sensor is provided within each channel circuitry for measuring the current delivered through said electrical coupling and an information processor and RF output controller coupled to said temperature sensor and said current sensor for estimating the likelihood of coagulum formation. When this functionality is propagated simultaneously through multiple ablation channels, the resulting linear or curvilinear lesion is deeper with less gaps. Hence, the clinical result is improved due to improved lesion integrity.
Owner:SICHUAN JINJIANG ELECTRONICS SCI & TECH CO LTD

Ablation of rectal and other internal body structures

The invention provides an apparatus and system for ablation of body structures or tissue in the region of the rectum. A catheter is inserted into the rectum, and an electrode is disposed thereon for emitting energy. The environment for an ablation region is isolated or otherwise controlled by blocking gas or fluid using a pair of inflatable balloons at upstream and downstream locations. Inflatable balloons also serve to anchor the catheter in place. A plurality of electrodes are disposed on the catheter and at least one such electrode is selected and advanced out of the catheter to penetrate and ablate selected tissue inside the body in the region of the rectum. The electrodes are coupled to sensors to determine control parameters of the body structure or tissue, and which are used by feedback technique to control delivery of energy for ablation or fluids for cooling or hydration. The catheter includes an optical path disposed for coupling to an external view piece, so as to allow medical personnel to view or control positioning of the catheter and operation of the electrodes. The catheter is disposed to deliver flowable substances for aiding in ablation, or for aiding in repair of tissue, such as collagen or another substance for covering lesions or for filling fissures. The flowable substances are delivered using at least one lumen in the catheter, either from at least one hole in the catheter, from an area of the catheter covered by a microporous membrane, or from microporous balloons.
Owner:VIDACARE

Method of Forming a Lesion in Heart Tissue

InactiveUS7100614B2Facilitate responsive and precise positionabilitySuture equipmentsElectrotherapyDefect repairPatch type
Devices, systems, and methods are provided for accessing the interior of the heart and performing procedures therein while the heart is beating. In one embodiment, a tubular access device having an inner lumen is provided for positioning through a penetration in a muscular wall of the heart, the access device having a means for sealing within the penetration to inhibit leakage of blood through the penetration. The sealing means may comprise a balloon or flange on the access device, or a suture placed in the heart wall to gather the heart tissue against the access device. An obturator is removably positionable in the inner lumen of the access device, the obturator having a cutting means at its distal end for penetrating the muscular wall of the heart. The access device is preferably positioned through an intercostal space and through the muscular wall of the heart. Elongated instruments may be introduced through the tubular access device into an interior chamber of the heart to perform procedures such as septal defect repair and electrophysiological mapping and ablation. A method of septal defect repair includes positioning a tubular access device percutaneously through an intercostal space and through a penetration in a muscular wall of the heart, passing one or more instruments through an inner lumen of the tubular access device into an interior chamber of the heart, and using the instruments to close the septal defect. Devices and methods for closing the septal defect with either sutures or with patch-type devices are disclosed.
Owner:HEARTPORT

Method and system for knowledge guided hyperintensity detection and volumetric measurement

An automated method and/or system for identifying suspected lesions in a brain is provided. A processor (a) provides a magnetic resonance image (MRI) of a patient's head, including a plurality of slices of the patient's head, which MRI comprises a multispectral data set that can be displayed as an image of varying pixel intensities. The processor (b) identifies a brain area within each slice to provide a plurality of masked images of intracranial tissue. The processor (c) applies a segmentation technique to at least one of the masked images to classify the varying pixel intensities into separate groupings, which potentially correspond to different tissue types. The processor (d) refines the initial segmentation into the separate groupings of at least the first masked image obtained from step (c) using one or more knowledge rules that combine pixel intensities with spatial relationships of anatomical structures to locate one or more anatomical regions of the brain. The processor (e) identifies, if present, the one or more anatomical regions of the brain located in step (d) in other masked images obtained from step (c). The processor (f) further refines the resulting knowledge rule-refined images from steps (d) and (e) to locate suspected lesions in the brain.
Owner:UNIV OF SOUTH FLORIDA

Guide wire control catheters for crossing occlusions and related methods of use

A wire control catheter for aligning and guiding a guide wire through a lesion in a vessel is provided. The wire control catheter includes a shaft having a guide wire lumen and a control wire lumen. A control wire passes through the control wire lumen and is used in combination with an articulation structure to deflect or curve a distal tip portion of the catheter. The distal catheter shaft may include a centering device for centering the catheter within the vessel. The distal catheter shaft also may include a pre-dilation balloon for dilating the lesion prior to performing angioplasty or other treatment on the lesion. Additionally, a sliding sheath catheter may be used to provide additional support to the guide wire. The sliding sheath catheter is sized to fit within the guide wire lumen of the control catheter and to allow the guide wire to pass through it. A method of treatment of a blood vessel includes inserting a guide wire into the blood vessel and advancing a control catheter over the guide wire until the distal tip of catheter is near the occlusion in the blood vessel. The tip of the catheter then is deflected via a control wire and an articulation structure. The guide wire is then advanced across the occlusion. The control catheter also may be advanced across the occlusion simultaneously with the guide wire or subsequent to the guide wire crossing. Prior to crossing the occlusion, the wire control catheter may be centered using a centering device. Subsequent to crossing the occlusion, the occlusion may be pre-dilated with a pre-dilation balloon of the wire control catheter.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products