Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

22361 results about "Ultrasound" patented technology

Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies from person to person and is approximately 20 kilohertz (20,000 hertz) in healthy young adults. Ultrasound devices operate with frequencies from 20 kHz up to several gigahertz.

Surgical stapler and method of applying plastic staples to body tissue

A surgical stapler utilizing plastic staples and ultrasonic welding to secure the staples in body tissue. The stapler includes a pair of jaws movable between open and closed positions, a handle and trigger assembly for controlling operation of the jaws, and an elongated tubular structure connecting the handle and trigger assembly to the jaws. The stapler also includes an ejection assembly for ejecting at least one staple from one of the jaws against the other of the jaws. An anvil and a horn are positioned in the other of the jaws and are arranged to receive ends of the ejected staple such that the ends overlap between the anvil and the horn. The horn is for melting and bonding at least a portion of the overlapping ends of the staple upon being energized by a predetermined form of energy, and one of the anvil and the horn is movable from within the bonded staple to allow the jaws to be moved to an open position.

Ultrasonic surgical system and method

An ultrasonic surgical system has an ultrasonic unit including an instrument operatively connected to an ultrasonic generator, wherein the instrument has an ultrasonic end effector on the distal end of a shaft. The system further includes a positioning unit including a movable arm adapted for releasably holding the instrument, whereby an operator may direct the positioning unit to position the end effector at a surgical site inside a body cavity of a patient for performing a plurality of surgical tasks. The system further includes a control unit operatively connected to the ultrasonic and positioning units, wherein the control unit is programmable with a surgical subroutine for performing the surgical tasks. The system further includes a user interface operatively connected to the control unit for initiating an operative cycle of the surgical subroutine such that the surgical tasks are automatically performed during the operative cycle.

Ultrasonic surgical instruments

An ultrasonic surgical instrument is provided. The ultrasonic surgical instrument includes a housing having an elongated shaft extending therefrom. The shaft has a jaw member disposed at a distal end thereof. The jaw member is movable between an open configuration and a clamping configuration and includes a tissue contacting surface thereon. A cutting blade extends from a distal end of the shaft and operably couples to the housing and adjacent the jaw member to treat tissue. At least one sensor is configured to sense at least one operational parameter of the ultrasonic surgical instrument. At least one controller in operable communication with the at least one sensor is configured to terminate delivery of ultrasonic energy to the cutting blade when the at least one sensor senses the at least one operational parameter.

Multi-sensor integration for a vehicle

A sensor system for use in a vehicle that integrates sensor data from more than one sensor in an effort to facilitate collision avoidance and other types of sensor-related processing. The system include external sensors for capturing sensor data external to the vehicle. External sensors can include sensors of a wide variety of different sensor types, including radar, image processing, ultrasonic, infrared, and other sensor types. Each external sensor can be configured to focus on a particular sensor zone external to the vehicle. Each external sensor can also be configured to focus primarily on particular types of potential obstacles and obstructions based on the particular characteristics of the sensor zone and sensor type. All sensor data can be integrated in a comprehensive manner by a threat assessment subsystem within the sensor system. The system is not limited to sensor data from external sensors. Internal sensors can be used to capture internal sensor data, such a vehicle characteristics, user attributes, and other types of interior information. Moreover, the sensor system can also include an information sharing subsystem of exchanging information with other vehicle sensor systems or for exchanging information with non-vehicle systems such as a non-movable highway sensor system configured to transmit and receive information relating to traffic, weather, construction, and other conditions. The sensor system can potentially integrate data from all different sources in a comprehensive and integrated manner. The system can integrate information by assigning particular weights to particular determinations by particular sensors.

Excisional biopsy devices and methods

InactiveUS6863676B2Efficiently and safely exciseMinimize complicationCannulasSurgical needlesUltrasonic sensorTissue Collection
An excisional biopsy system includes a tubular member that has a proximal end and a distal end in which one or more windows are defined. A first removable probe has a proximal portion that includes a cutting tool extender and a distal portion that includes a cutting tool. The first removable probe may be configured to fit at least partially within the tubular member to enable the cutting tool to selectively bow out of and to retract within one of the windows when the cutting tool extender is activated. A second removable probe has a proximal section that includes a tissue collection device extender and a distal section that includes a tissue collection device. The second removable probe may also be configured to fit at least partially within the tubular member to enable the tissue collection device to extend out of and to retract within one of the windows when the tissue collection device extender is activated. A third removable probe may also be provided. The third removable probe may also be configured to fit at least partially within the tubular member and may include an imaging device, such as an ultrasound transducer, mounted therein. By selectively activating the cutting tool and the tissue collection device while rotating the excisional device, a tissue specimen may be cut from the surrounding tissue and collected for later analysis.

Ultrasonically Powered Medical Devices and Systems, and Methods and Uses Thereof

The present invention provides a new family of ultrasonically powered medical devices and systems for powering such devices. Disclosed are methods for improving the overall power transfer efficiency of devices according to the present invention, as well as a wide variety of medical uses for such devices and systems. Devices of the present invention comprise a transducer that, during operation, converts electrical energy into high frequency, low amplitude mechanical vibrations that are transmitted to a driven-member, such as a wheel, that produces macroscopic rotary or linear output mechanical motions. Such motions may be further converted and modified by mechanical means to produce desirable output force and speed characteristics that are transmitted to at least one end-effector that performs useful mechanical work on soft tissue, bone, teeth and the like. Power systems of the present invention comprise one or more such handheld devices electrically connected to a power generator. Examples of powered medical tools enabled by the present invention include, but are not limited to, linear or circular staplers or cutters, biopsy instruments, suturing instruments, medical and dental drills, tissue compactors, tissue and bone debriders, clip appliers, grippers, extractors, and various types of orthopedic instruments. Devices of the present invention may be partly or wholly reusable, partly or wholly disposable, and may operate in forward or reverse directions, as well as combinations of the foregoing. The devices and systems of the present invention provide a safe, effective, and economically viable alternative source for mechanical energy, which is superior to AC or DC (battery) powered motors, compressed air or compressed gas, and hand powered systems.

Ultrasonic device for tissue ablation and sheath for use therewith

A transverse mode ultrasonic probe is provided which creates a cavitation area along its longitudinal length, increasing the working surface of the probe. Accessory sheaths are also provided for use with the probe to enable a user to select from features most suited to an individual medical procedure. The sheaths provide acoustic enhancing and aspiration enhancing properties, and / or can be used as surgical tools or as medical access devices, protecting tissue from physical contact with the probe.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products