Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

9854 results about "Ultrasound" patented technology

Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies from person to person and is approximately 20 kilohertz (20,000 hertz) in healthy young adults. Ultrasound devices operate with frequencies from 20 kHz up to several gigahertz.

Multi-sensor integration for a vehicle

A sensor system for use in a vehicle that integrates sensor data from more than one sensor in an effort to facilitate collision avoidance and other types of sensor-related processing. The system include external sensors for capturing sensor data external to the vehicle. External sensors can include sensors of a wide variety of different sensor types, including radar, image processing, ultrasonic, infrared, and other sensor types. Each external sensor can be configured to focus on a particular sensor zone external to the vehicle. Each external sensor can also be configured to focus primarily on particular types of potential obstacles and obstructions based on the particular characteristics of the sensor zone and sensor type. All sensor data can be integrated in a comprehensive manner by a threat assessment subsystem within the sensor system. The system is not limited to sensor data from external sensors. Internal sensors can be used to capture internal sensor data, such a vehicle characteristics, user attributes, and other types of interior information. Moreover, the sensor system can also include an information sharing subsystem of exchanging information with other vehicle sensor systems or for exchanging information with non-vehicle systems such as a non-movable highway sensor system configured to transmit and receive information relating to traffic, weather, construction, and other conditions. The sensor system can potentially integrate data from all different sources in a comprehensive and integrated manner. The system can integrate information by assigning particular weights to particular determinations by particular sensors.

Excisional biopsy devices and methods

InactiveUS6863676B2Efficiently and safely exciseMinimize complicationCannulasSurgical needlesUltrasonic sensorTissue Collection
An excisional biopsy system includes a tubular member that has a proximal end and a distal end in which one or more windows are defined. A first removable probe has a proximal portion that includes a cutting tool extender and a distal portion that includes a cutting tool. The first removable probe may be configured to fit at least partially within the tubular member to enable the cutting tool to selectively bow out of and to retract within one of the windows when the cutting tool extender is activated. A second removable probe has a proximal section that includes a tissue collection device extender and a distal section that includes a tissue collection device. The second removable probe may also be configured to fit at least partially within the tubular member to enable the tissue collection device to extend out of and to retract within one of the windows when the tissue collection device extender is activated. A third removable probe may also be provided. The third removable probe may also be configured to fit at least partially within the tubular member and may include an imaging device, such as an ultrasound transducer, mounted therein. By selectively activating the cutting tool and the tissue collection device while rotating the excisional device, a tissue specimen may be cut from the surrounding tissue and collected for later analysis.

Ultrasonically Powered Medical Devices and Systems, and Methods and Uses Thereof

The present invention provides a new family of ultrasonically powered medical devices and systems for powering such devices. Disclosed are methods for improving the overall power transfer efficiency of devices according to the present invention, as well as a wide variety of medical uses for such devices and systems. Devices of the present invention comprise a transducer that, during operation, converts electrical energy into high frequency, low amplitude mechanical vibrations that are transmitted to a driven-member, such as a wheel, that produces macroscopic rotary or linear output mechanical motions. Such motions may be further converted and modified by mechanical means to produce desirable output force and speed characteristics that are transmitted to at least one end-effector that performs useful mechanical work on soft tissue, bone, teeth and the like. Power systems of the present invention comprise one or more such handheld devices electrically connected to a power generator. Examples of powered medical tools enabled by the present invention include, but are not limited to, linear or circular staplers or cutters, biopsy instruments, suturing instruments, medical and dental drills, tissue compactors, tissue and bone debriders, clip appliers, grippers, extractors, and various types of orthopedic instruments. Devices of the present invention may be partly or wholly reusable, partly or wholly disposable, and may operate in forward or reverse directions, as well as combinations of the foregoing. The devices and systems of the present invention provide a safe, effective, and economically viable alternative source for mechanical energy, which is superior to AC or DC (battery) powered motors, compressed air or compressed gas, and hand powered systems.

Digital security multimedia sensor

A fully digital camera system provides high-resolution still image and streaming video signals via a network to a centralized, server supported security and surveillance system. The digital camera for collects an image from one or more image transducers, compressing the image and sending the compressed digital image signal to a receiving station over a digital network. A plurality of image transducers or sensors may be included in a single camera unit, providing array imaging such as full 360 degree panoramic imaging, universal or spherical imaging and field imaging by stacking or arranging the sensors in an array. The multiple images are then compressed and merged at the camera in the desired format to permit transmission of the least amount of data to accomplish the desired image transmission. The camera also employs, or connects to, a variety of sensors other than the traditional image sensor. Sensors for fire, smoke, sound, glass breakage, motion, panic buttons, and the like, may be embedded in or connected to the camera. Data captured by these sensors may be digitized, compressed, and networked to detect notable conditions. An internal microphone and associated signal processing system may be equipped with suitable signal processing algorithms for the purpose of detecting suitable acoustic events and their location. In addition, the camera is equipped with a pair of externally accessible terminals where an external sensor may be connected. In addition, the camera may be equipped with a short-range receiver that may detect the activation of a wireless ‘panic button’ carried by facility personnel. This ‘panic button’ may employ infrared, radio frequency (RF), ultrasonic, or other suitable methods to activate the camera's receiver.

Relay device and ultrasonic-surgical and electrosurgical system

A relay device relays signals between a single switch unit and each of an ultrasonic surgical device that supplies an ultrasonic signal and an electrosurgical device that supplies a high-frequency signal, the switch unit being used for on/off control of outputs of the ultrasonic surgical device and the electrosurgical device, the ultrasonic surgical device and the electrosurgical device being connected to an ultrasonic/high-frequency treatment instrument capable of performing an ultrasonic treatment using ultrasonic vibration in accordance with the supplied ultrasonic signal and performing a high-frequency treatment in accordance with the supplied high-frequency signal. The relay device includes a switch detection unit for detecting the turn-on/off of the switch unit, a switch element for outputting a switch signal, which is used for on/off control of outputs of the ultrasonic signal and the high-frequency signal, to each of the ultrasonic surgical device and the electrosurgical device in accordance with a detection output of the switch detection unit, and a control unit for performing on/off control of the switch signal of the switch element in accordance with the detection output to control at least one of an output timing and an output mode of each of the ultrasonic signal and the high-frequency signal.

System and method for radar-assisted catheter guidance and control

InactiveUS20050096589A1Less trainingMinimizing and eliminating useEndoscopesMedical devicesRadar systemsGuidance control
A Catheter Guidance Control and Imaging (CGCI) system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons. The magnetic tip performs two functions. First, it allows the position and orientation of the tip to be determined by using a radar system such as, for example, a radar range finder or radar imaging system. Incorporating the radar system allows the CGCI apparatus to detect accurately the position, orientation and rotation of the surgical tool embedded in a patient during surgery. In one embodiment, the image generated by the radar is displayed with the operating room imagery equipment such as, for example, X-ray, Fluoroscopy, Ultrasound, MRI, CAT-Scan, PET-Scan, etc. In one embodiment, the image is synchronized with the aid of fiduciary markers located by a 6-Degrees of Freedom (6-DOF) sensor. The CGCI apparatus combined with the radar and the 6-DOF sensor allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A virtual representation of the magnetic tip serves as an operator control. This control possesses a one-to-one positional relationship with the magnetic tip inside the patient's body. Additionally, this control provides tactile feedback to the operator's hands in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of this control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products