Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6760 results about "Ultrasonic vibration" patented technology

Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces.

Surgical operating apparatus

A surgical operating apparatus includes a sheath provided with a distal end part and a proximal end part, an apparatus main body to be coupled to the proximal end part of the sheath, a probe which is provided with a distal end part and a proximal end part, is inserted into the sheath, and transmits ultrasonic vibration from the proximal end part side to the distal end part side, a jaw which is turnably supported at the distal end part of the sheath, and is operated to be opened or closed between a closed position at which the jaw is engaged with the distal end part of the probe, and an opened position at which the jaw is separated from the distal end part of the probe, a handle which is provided in the apparatus main body, and operates the opening/closing operation of the jaw, a slider section which is provided in the apparatus main body, and is advanced/retreated to be moved in a central axis direction of the probe between a first movement position corresponding to the opened position of the jaw and a second movement position corresponding to the closed position of the jaw in accordance with the operation of the handle, and a notification mechanism for notifying of a state where the slider section has moved by an amount equal to or larger than a predetermined amount on the way thereof from the first movement position to the second movement position.
Owner:OLYMPUS MEDICAL SYST CORP

Relay device and ultrasonic-surgical and electrosurgical system

A relay device relays signals between a single switch unit and each of an ultrasonic surgical device that supplies an ultrasonic signal and an electrosurgical device that supplies a high-frequency signal, the switch unit being used for on/off control of outputs of the ultrasonic surgical device and the electrosurgical device, the ultrasonic surgical device and the electrosurgical device being connected to an ultrasonic/high-frequency treatment instrument capable of performing an ultrasonic treatment using ultrasonic vibration in accordance with the supplied ultrasonic signal and performing a high-frequency treatment in accordance with the supplied high-frequency signal. The relay device includes a switch detection unit for detecting the turn-on/off of the switch unit, a switch element for outputting a switch signal, which is used for on/off control of outputs of the ultrasonic signal and the high-frequency signal, to each of the ultrasonic surgical device and the electrosurgical device in accordance with a detection output of the switch detection unit, and a control unit for performing on/off control of the switch signal of the switch element in accordance with the detection output to control at least one of an output timing and an output mode of each of the ultrasonic signal and the high-frequency signal.
Owner:OLYMPUS MEDICAL SYST CORP

Process for anchoring connecting elements in a material with pores or cavities and connecting elements therefor

A joining pin (3.2) with which two parts (1 and 2) made from a porous material, particularly wood or a wood-like material, are to be joined together, is anchored in the porous material at predetermined anchoring points (31, 33). For this purpose, a bore (4.2) with a closed inner end (41) is made in the parts (1 and 2). The shape of this bore (4.2) is so matched to the joining pin (3.2) that it can be introduced substantially without force expenditure into the bore and is positionable in a first position. At least one predetermined anchoring point (31, 33) between the joining pin (3.2) and the wall of the bore (4.2) is formed when pressure is built up by pressing the joining pin (3.2) with a pressing force (F) more deeply into the bore to a second position. Energy is supplied in a planned manner to the joining pin (3.2) so that at the predetermined anchoring points (31, 33) the thermoplastic material of the joining pin (3.2) is plasticized. The locally plasticized plastic material is pressed by the local pressure into the porous material of the parts and forms local, macroscopic anchors (10, 20). The joining pin (3.2) is, e.g., made entirely from a thermoplastic material and the energy for plasticizing is supplied thereto by ultrasonic vibration.
Owner:WOODWELDING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products