Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

32211 results about "Resonance" patented technology

Resonance describes the phenomena of amplification that occurs when the frequency of a periodically applied force is in harmonic proportion to a natural frequency of the system on which it acts. When an oscillating force is applied at the resonant frequency of another system, the system will oscillate at a higher amplitude than when the same force is applied at other, non-resonant frequencies.

Method for detecting transverse mode vibrations in an ultrasonic hand piece/blade

A method for detecting transverse mode vibrations in an ultrasonic hand piece / blade for determining the existence of unwanted vibration in the hand piece / blade. A tracking filter centered at the drive frequency of the generator, is used to monitor the drive frequency of the ultrasonic generator and attenuate the drive signal when it exceeds a predetermined level. The tracking filter has a wide pass band. Alternatively, a tracking filter having a pass band which is divided into several regions is used to avoid other longitudinal resonances, such as a resonance at a second harmonic, or other spectral features that would otherwise detract from the tracking accuracy of the filter.
Owner:ETHICON ENDO SURGERY INC

Method for driving an ultrasonic system to improve acquisition of blade resonance frequency at startup

The ability of an ultrasonic system to sweep and lock onto a resonance frequency of a blade subjected to a heavy load at startup is improved by applying a high drive voltage or a high drive current while systematically increasing the level of the applied signal. Increasing the drive signal to the hand piece results in an improved and more pronounced “impedance spectrum.” That is, under load, the increased drive signal causes the maximum phase margin to become higher and the minimum / maximum impedance magnitude to become more pronounced. Increasing the excitation drive signal to the hand piece / blade at startup significantly alleviates the limiting factors associated with ultrasonic generators, which results in an increase of the maximum load capability at startup.
Owner:ETHICON ENDO SURGERY INC

Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument

A power reception device transmits authentication information (e.g., start code, manufacturer ID, product ID, rated power information, and resonance characteristic information) to a power transmission device before starting normal power transmission by a non-contact power transmission system. The power transmission device performs instrument authentication based on the received authentication information, and regulates the maximum transmission power is regulated to conform to a power-reception-device side rated power. The power transmission device then performs normal power transmission.
Owner:SEIKO EPSON CORP +1

RFID tag

Provided is an RFID tag, wherein a communication distance of several centimeter or more can be secured and the cost of which can be reduced in comparison to conventional on-chip antennas, even when being compact in size (square shaped with a side of 1.9 to 13 mm). The RFID tag (80) comprises an antenna (20), an IC chip (30) connected to the antenna (20), and a sealing material (10) that seals the IC chip (30) and the antenna (20). The antenna (20) is a coil antenna or a loop antenna, and the resonance frequency (f0) of an electric circuit constituted by the inductance (L) of the antenna (20) and the capacitance (C) of the IC chip (30) is equal to the operation frequency of the IC chip (30), or in the vicinity thereof.
Owner:SES RFID SOLUTIONS

Non-contact power transmission device

An electromagnetic resonance non-contact power transmission device includes a transmitter including a transmitter resonance element having a mechanism for discretely or continuously varying a resonant frequency, a transmitter excitation element coupled to the transmitter resonance element by electromagnetic induction, and an alternating current source for applying an alternating current at the same frequency as the resonant frequency to the transmitter excitation element, and a plurality of receivers each including a receiver resonance element having a specific resonant frequency, a receiver excitation element coupled to the receiver resonance element by electromagnetic induction, and an output circuit for outputting an electric current induced by the receiver excitation element. Electric power is transmitted selectively from the transmitter to any of the receivers having different specific resonant frequencies by changing the resonant frequency of the transmitter.
Owner:SONY CORP

Inductively coupled ballast circuit

A ballast circuit is disclosed for inductively providing power to a load. The ballast circuit includes an oscillator, a driver, a switching circuit, a resonant tank circuit and a current sensing circuit. The current sensing circuit provides a current feedback signal to the oscillator that is representative of the current in the resonant tank circuit. The current feedback signal drives the frequency of the ballast circuit causing the ballast circuit to seek resonance. The ballast circuit preferably includes a current limit circuit that is inductively coupled to the resonant tank circuit. The current limit circuit disables the ballast circuit when the current in the ballast circuit exceeds a predetermined threshold or falls outside a predetermined range.
Owner:PHILIPS IP VENTURES BV

System and method for selective transfer of radio frequency power

A system and method is provided for the inductive transfer of electric power between a substantially flat primary surface and a multitude of secondary devices in such a way that the power transfer is localized to the vicinities of individual device coils. The contact free power transfer does not require precise physical alignment between the primary surface and the secondary device and can allow the secondary device or devices to be placed anywhere and in arbitrary orientation with respect to the primary surface. Such power transfer is realized without the need of complex high frequency power switching network to turn the individual primary coils on or off and is completely scalable to almost arbitrary size. The local anti-resonance architecture of the primary device will block primary current from flowing when no secondary device or devices are in proximity to the local RF power network. The presence of a tuned secondary device detunes the local anti-resonance on the primary surface; thereby enable the RF power to be transferred from the local primary coils to the secondary device. The uniformity of the inductive coupling between the active primary surface and the secondary devices is improved with a novel multi-pole driving technique which produces an apparent traveling wave pattern across the primary surface.
Owner:MOBILEWISE

Wireless power control

A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
Owner:PHILIPS IP VENTURES BV

Power transmission method of high-power wireless induction power supply system

A power transmission method used in a high-power wireless induction power supply system consisting of a power-supplying module and a power-receiving module is disclosed. The power-supplying module regulates its output energy by means of frequency modulation and driving power adjustment, enabling the energy to be received by the power-receiving module and transmitted through a power-receiving coil array and a primary resonant capacitor and a secondary resonant capacitor of power-receiving resonance circuit, a synchronizing rectifier, a low-power voltage stabilizer, a high-frequency filter capacitor, a first power switch, a low-frequency filter capacitor and a second power switch of a filter circuit for output to an external apparatus.
Owner:FU TONG TECH

Inductively coupled ballast circuit

InactiveUS20050093475A1Small region of changeInefficient power transferWater treatment parameter controlWater/sewage treatment by irradiationCurrent limitingElectrical ballast
A ballast circuit is disclosed for inductively providing power to a load. The ballast circuit includes an oscillator, a driver, a switching circuit, a resonant tank circuit and a current sensing circuit. The current sensing circuit provides a current feedback signal to the oscillator that is representative of the current in the resonant tank circuit. The current feedback signal drives the frequency of the ballast circuit causing the ballast circuit to seek resonance. The ballast circuit preferably includes a current limit circuit that is inductively coupled to the resonant tank circuit. The current limit circuit disables the ballast circuit when the current in the ballast circuit exceeds a predetermined threshold or falls outside a predetermined range.
Owner:PHILIPS IP VENTURES BV

Amplification Relay Device of Electromagnetic Wave and a Radio Electric Power Conversion Apparatus Using the Above Device

The present invention provides an amplifying repeater, which is constructed in such a manner that a ferrite core is inserted into a coil with a pre-determined number of winds to increase an induced electromotive force caused by an increase in flux linkage using a time-varying magnetic field of electromagnetic waves at a position distant from various electromagnetic wave generating sources by a predetermined distance and the induction coil and a variable condenser for inducing resonance are connected to each other to increase current while reducing a resistant component existing in the induction coil to intensify and amplify the magnetic field of electromagnetic waves. Furthermore, the present invention provides a wireless power conversion charging device using the magnetic field of electromagnetic waves, which is located between an electromagnetic wave generating source transmitter and a receiving coil or attached to the transmitter and receiving coil. The wireless power conversion charging device includes a rectifying diode for rectifying an electromotive force induced in a construction in which a resonance and impedance matching variable condenser is connected to a coil in series or in parallel in order to transmit maximum induced power to a charging battery that is a load using electromagnetic waves amplified by the amplifying repeater, and a smoothing condenser for smoothing the rectified voltage. Accordingly, charging power required for various small power electronic devices can be provided and power can be supplied to various loads.
Owner:JC PROTEK +1

Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition

Small, rugged scanners micro-fabricated from commercial optical fibers to form waveguides or other structures. The scanning waveguide has a distal portion on which is formed a non-linear taper with a diameter that decreases toward a distal end. Optionally, a hinge portion having a reduced diameter can be formed in the distal portion, improving the scanning properties of the waveguide. A micro-lens can be integrally formed at the distal tip of the waveguide with either a droplet of an optical adhesive, or by using an energy beam to melt the material of the waveguide to form a droplet. The droplet is shaped with an externally applied force. When mechanically driven in vibratory resonance, the tip of the optical waveguides moves in linear or two-dimensional scan patterns of relatively high amplitude and frequency, and large field of view. The scanner can be used either for image acquisition or image display.
Owner:UNIV OF WASHINGTON +1

Method and apparatus for controlling wireless power transmission

Provided are a wireless power transmission control method and wireless power transmission control apparatuses. The wireless power transmission control method may include transmitting a wake-up request signal used to wake up a target device, and receiving a response message from the target device activated by the wake-up request signal. A source device may set a demand power based on the response message, and may transmit a resonance power to the target device based on the demand power.
Owner:SAMSUNG ELECTRONICS CO LTD

Method of manufacturing a lamp assembly

A lamp assembly configured to inductively receive power from a primary coil. The lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, the lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.
Owner:PHILIPS IP VENTURES BV

Method and system for knowledge guided hyperintensity detection and volumetric measurement

An automated method and / or system for identifying suspected lesions in a brain is provided. A processor (a) provides a magnetic resonance image (MRI) of a patient's head, including a plurality of slices of the patient's head, which MRI comprises a multispectral data set that can be displayed as an image of varying pixel intensities. The processor (b) identifies a brain area within each slice to provide a plurality of masked images of intracranial tissue. The processor (c) applies a segmentation technique to at least one of the masked images to classify the varying pixel intensities into separate groupings, which potentially correspond to different tissue types. The processor (d) refines the initial segmentation into the separate groupings of at least the first masked image obtained from step (c) using one or more knowledge rules that combine pixel intensities with spatial relationships of anatomical structures to locate one or more anatomical regions of the brain. The processor (e) identifies, if present, the one or more anatomical regions of the brain located in step (d) in other masked images obtained from step (c). The processor (f) further refines the resulting knowledge rule-refined images from steps (d) and (e) to locate suspected lesions in the brain.
Owner:UNIV OF SOUTH FLORIDA

Wireless charging apparatus and method

A wireless charging method and apparatus are provided. A non-contact wireless local communication unit performs non-contact wireless local communication for wireless charging authentication through a non-contact wireless local communication antenna. A wireless power receiver receives supply power from a wireless power transmitter by using a resonator resonating on a resonance frequency equal to that of the wireless power transmitter after the wireless charging authentication. A charging controller performs wireless charging by using the supply power received by the wireless power receiver. One or more switches switch between a connection between the non-contact wireless local communication antenna and the non-contact wireless local communication unit, and a connection between the wireless power receiver and the charging controller.
Owner:SAMSUNG ELECTRONICS CO LTD

Wireless transfer of information using magneto-electric devices

Apparatus and method for wireless near-field magnetic communication (NFMC) of information (e.g., voice or data) over modest distances (centimeters to a few kilometers). The transmission can proceed from an inductive coil transmitter to a magneto-electric (ME) receiving device, or between two ME devices. Electrical power may also be transmitted from and / or received using the same device. In one case, power and data are transmitted from an induction coil to a distant ME device that collects power and transmits data back to the power-transmission coil. In another case, the wireless transfer of data can be carried out between two ME devices. ME devices can be engineered to transmit or receive data and to receive electric power over a variety of frequencies by changing their dimensions, their material makeup and configuration, electrode configurations, and / or their resonance modes (longitudinal, transversal, bending, shear etc). Data rates up to and above several kilo-bits / s are possible using these methods with no limits on the frequency and duration of the communication.
Owner:FERRO SOLUTIONS

Energy transferring system and method thereof

An energy transferring system including a source-side resonator, an intermediate resonant module, and a device-side resonator is provided. The three resonators substantially have the same resonant frequency for generating resonance. The energy on the source-side resonator is coupled to the intermediate resonant module, such that non-radiative energy transfer is performed between the source-side resonator and the intermediate resonant module. The energy coupled to the intermediate resonant module is further coupled to the device-side resonator, such that non-radiative energy transfer is performed between the intermediate resonant module and the device-side resonator to achieve energy transfer between the source-side resonator and the device-side resonator. The coupling coefficient between the intermediate resonant module and its two adjacent resonators is larger than the coupling coefficient between the source-side resonator and the device-side resonator. The invention has the advantages of high transmission efficiency, small volume, low cost.
Owner:DARFON ELECTRONICS CORP

Wireless energy transfer for person worn peripherals

Described is a system for wireless energy transfer for person worn peripherals. The system makes use of a technique referred to as strongly-coupled magnetic resonance to transfer energy across a distance without wires and enables efficient transfer of energy over distances of 10 to 18 cm or more. The system comprises a resonant power source, which could be embedded in a person's equipment vest or backpack receiving power from a central battery pack or micro fuel cell, and a resonant power capture unit which could be integrated with the helmet or hand held weapon, electronic device, and the like that may be carried or handled by a person.
Owner:WITRICITY CORP

Power transmission device, power transmission method, power reception device, power reception method, and power transmission system

A power transmission device includes: a transmission means including at least an oscillation means and a resonant means and for transmitting power to a power reception device by using a magnetic resonance-type power transmission technique; and a control means for controlling the reception power of the power reception device so as to be at a maximum by changing at least one of an oscillation frequency of the oscillation means and a resonant frequency of the resonant means.
Owner:SONY CORP

In-room acoustic magnitude response smoothing via summation of correction signals

A system and method are provided for smoothing the in-room acoustic magnitude response of an audio reproduction system. An in-room acoustic magnitude response analysis is performed to determine a room resonance induced peak associated with an audio signal. A replica of the audio signal is filtered at the room resonance induced peak. The filtered replica signal is added with the audio signal. Through this, smoothing of the room resonance induced peak may be achieved, such that a subjective impression of transient response and dynamics of the audio signal are preserved.
Owner:POLK AUDIO LLC +1

Power-receiving device, wireless power-feeding system including power-receiving device, and wireless communication system including power-receiving device

When a portable electronic appliance is provided with two systems, a wireless power-feeding system and a wireless communication system, each system requires two power-receiving devices, a coil and an antenna, leading to a problem of increased electronic appliance size and cost. Wireless power feeding employs the resonance method and uses a resonance coil using the resonance method and a power-receiving coil that receives power from the resonance coil. At least one of the resonance coil and the power-receiving coil can also be used as an antenna for wireless communication. Thus, a power-receiving device that can be used for two systems, wireless power feeding and wireless communication, can be provided.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products