Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

31814 results about "Resonance" patented technology

Resonance describes the phenomena of amplification that occurs when the frequency of a periodically applied force is in harmonic proportion to a natural frequency of the system on which it acts. When an oscillating force is applied at the resonant frequency of another system, the system will oscillate at a higher amplitude than when the same force is applied at other, non-resonant frequencies.

System and method for selective transfer of radio frequency power

A system and method is provided for the inductive transfer of electric power between a substantially flat primary surface and a multitude of secondary devices in such a way that the power transfer is localized to the vicinities of individual device coils. The contact free power transfer does not require precise physical alignment between the primary surface and the secondary device and can allow the secondary device or devices to be placed anywhere and in arbitrary orientation with respect to the primary surface. Such power transfer is realized without the need of complex high frequency power switching network to turn the individual primary coils on or off and is completely scalable to almost arbitrary size. The local anti-resonance architecture of the primary device will block primary current from flowing when no secondary device or devices are in proximity to the local RF power network. The presence of a tuned secondary device detunes the local anti-resonance on the primary surface; thereby enable the RF power to be transferred from the local primary coils to the secondary device. The uniformity of the inductive coupling between the active primary surface and the secondary devices is improved with a novel multi-pole driving technique which produces an apparent traveling wave pattern across the primary surface.
Owner:MOBILEWISE

Amplification Relay Device of Electromagnetic Wave and a Radio Electric Power Conversion Apparatus Using the Above Device

The present invention provides an amplifying repeater, which is constructed in such a manner that a ferrite core is inserted into a coil with a pre-determined number of winds to increase an induced electromotive force caused by an increase in flux linkage using a time-varying magnetic field of electromagnetic waves at a position distant from various electromagnetic wave generating sources by a predetermined distance and the induction coil and a variable condenser for inducing resonance are connected to each other to increase current while reducing a resistant component existing in the induction coil to intensify and amplify the magnetic field of electromagnetic waves. Furthermore, the present invention provides a wireless power conversion charging device using the magnetic field of electromagnetic waves, which is located between an electromagnetic wave generating source transmitter and a receiving coil or attached to the transmitter and receiving coil. The wireless power conversion charging device includes a rectifying diode for rectifying an electromotive force induced in a construction in which a resonance and impedance matching variable condenser is connected to a coil in series or in parallel in order to transmit maximum induced power to a charging battery that is a load using electromagnetic waves amplified by the amplifying repeater, and a smoothing condenser for smoothing the rectified voltage. Accordingly, charging power required for various small power electronic devices can be provided and power can be supplied to various loads.
Owner:JC PROTEK +1

Method and system for knowledge guided hyperintensity detection and volumetric measurement

An automated method and/or system for identifying suspected lesions in a brain is provided. A processor (a) provides a magnetic resonance image (MRI) of a patient's head, including a plurality of slices of the patient's head, which MRI comprises a multispectral data set that can be displayed as an image of varying pixel intensities. The processor (b) identifies a brain area within each slice to provide a plurality of masked images of intracranial tissue. The processor (c) applies a segmentation technique to at least one of the masked images to classify the varying pixel intensities into separate groupings, which potentially correspond to different tissue types. The processor (d) refines the initial segmentation into the separate groupings of at least the first masked image obtained from step (c) using one or more knowledge rules that combine pixel intensities with spatial relationships of anatomical structures to locate one or more anatomical regions of the brain. The processor (e) identifies, if present, the one or more anatomical regions of the brain located in step (d) in other masked images obtained from step (c). The processor (f) further refines the resulting knowledge rule-refined images from steps (d) and (e) to locate suspected lesions in the brain.
Owner:UNIV OF SOUTH FLORIDA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products