Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

16176 results about "Light spectrum" patented technology

Closed-loop, daylight-sensing, automatic window-covering system insensitive to radiant spectrum produced by gaseous-discharge lamps

InactiveUS6084231AMaximized ratioOptical radiation measurementLight dependant control systemsSpectral responseLow-pass filter
A system for automatic regulation of daylight admitted by a window in the presence of artificial illumination produced by a high-efficiency (e.g., fluorescent-type) electric lamp. A preferred embodiment, adaptive window covering system 10, consists of an illuminance sensor 11, a conventional control apparatus 12, and a conventional shading means 13. System 10 is used in conjunction with a conventional, high-efficiency, electric lamp 14 and a conventional window 18, in a room 19. Sensor 11 produces a signal dependent on power contained in a portion of the daylight spectrum, but substantially insensitive to power contained in the spectrum of artificial illumination produced by lamp 14. In a preferred embodiment, sensor 11 includes a silicon photodiode and optical low-pass filter to provide a spectral response which extends from approximately 800 to 1200 nanometers, which falls outside the spectrum produced by typical fluorescent lamps (e.g, 300 to 750 nanometers). Sensor 11 is oriented to sample the ambient illumination in room 19, which includes both daylight and artificial components. Control apparatus 12 produces an actuating signal dependent on the output of sensor 11. Shading means 13 varies the amount of daylight admitted by window 18 as a function of the actuating signal produced by control apparatus 12. Thus, system 10 varies the amount of daylight admitted by window 18 as a function of the power contained in a portion of the daylight spectrum, but independent of the power contained in the spectrum produced by lamp 14.

Method and apparatus for drug product tracking using encoded optical identification elements

A method and apparatus for drug product tracking (or other pharmaceutical, health care or cosmetics products, and/or the packages or containers they are supplied with) using diffraction grating-based encoded optical identification elements 8 includes an optical substrate 10 having at least one diffraction grating 12 disposed therein. The grating 12 has one or more colocated pitches Λ which represent a unique identification digital code that is detected when illuminated by incident light 24. The incident light 24 may be directed transversely from the side of the substrate 10 (or from an end) with a narrow band (single wavelength) or multiple wavelength source, and the code is represented by a spatial distribution of light or a wavelength spectrum, respectively, or a combination thereof. The encoded element 8 may be used to label any desired item, such as drugs or medicines, or other pharmaceutical or health care products or cosmetics. The label may be used for many different purposes, such as for sorting, tracking, identification, verification, authentication, anti-theft/anti-counterfeit, security/anti-terrorism, or for other purposes. In a manufacturing environment, the elements 8 may be used to track inventory for production information or sales of goods/products. Such labeling provides product identification at the pill or liquid medicine level, which provides traceability of these products to their manufacturer, thereby reducing counterfeit products in the marketplace. Also, the elements 8 may be incorporated into a film, liquid, coating or adhesive tape at attached to the product package.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products