Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

641 results about "Transverse mode" patented technology

A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwaves confined to a waveguide, and also in light waves in an optical fiber and in a laser's optical resonator.

Metal spatial filter to enhance model reflectivity in a vertical cavity surface emitting laser

An annular metal layer is provided between a conductive oxide layer and a dielectric mirror in a vertical cavity surface emitting laser. The annular metal layer defines the output window for the laser cavity which matches the TEM.sub.00 fundamental mode of the light beam emitted by the active region of the VCSEL. The metal layer outside the output window provides modal reflectivity discrimination against high order transverse modes of the light beam emitted by the active region of the VCSEL.
Owner:XEROX CORP

Multi-spectral laser array and optical system

An organic vertical cavity laser light producing device (10) comprises a substrate (20). A plurality of laser emitters (200) emits laser light in a direction orthogonal to the substrate. Each laser emitter within the plurality of laser emitters has a first lateral mode structure in a first axis orthogonal to the laser light direction and has a second lateral mode structure in a second axis orthogonal to both the laser light direction and the first axis. Each laser emitter comprises a first mirror provided on a top surface of the substrate (20) and is reflective to light over a predetermined range of wavelengths. An organic active region (40) produces laser light (350). A second mirror is provided above the organic active region and is reflective to light over a predetermined range of wavelengths. A pumping means excites the plurality of laser emitters.
Owner:EASTMAN KODAK CO

Photoelectric sensor and manufacturing method thereof

The invention provides a photoelectric sensor and a manufacturing method thereof. The photoelectric sensor comprises a pixel unit arranged on the substrate; and the pixel unit includes a photodiode and a thin-film transistor. A drain structure of the thin-film transistor servers as a cathode structure of the photodiode, so that the area occupied by the pixel can be reduced and the resolution ratio of the photoelectric sensor can be improved. Moreover, the anode structure and the cathode structure of the photodiode are arranged in a transverse mode, so that the thickness of the photoelectric sensor can be effectively reduced and thus the photoelectric sensor has advantages of small size and high resolution ration. Besides, the manufacturing method of the photoelectric sensor can be combined with the traditional LCD manufacturing method, thereby simplifying the production process of the photoelectric sensor, reducing the production cycle, and effectively reducing the production cost.
Owner:SHANGHAI OXI TECH

Suppression of higher-order modes by resonant coupling in bend-compensated optical fibers

ActiveUS20090034059A1High fundamental mode lossLaser detailsOptical fibre with multilayer core/claddingFiberCoupling
The effect of bending is anticipated in an optical fiber design, so that resonant coupling remains an effective strategy for suppressing HOMs. The index profile of the fiber and its bend radius are configured so that there is selective resonant coupling of at least one HOM, but not the fundamental mode, in the bent segment of the fiber. In an illustrative embodiment, the bend radius (or predetermined range of bend radii) of an optical fiber is known a priori. The core and cladding regions are configured to support (guide) the propagation of signal light in a fundamental transverse mode and at least one higher-order transverse mode in the core region. The cladding region includes an outer cladding region and an annular trench region. The trench region includes at least one axially extending, raised-index pedestal (waveguide) region having a refractive index higher than that of the outer cladding region. Within at least the bent segment the at least one pedestal region is configured (i) to support the propagation of at least one transverse mode and (ii) to resonantly couple at least one of the higher-order transverse modes (HOMs) of the core region to at least one transverse mode (e.g., the fundamental mode) of the pedestal region when the fiber is bent to a radius within the predetermined range of radii. In effect, the pedestal regions are configured so that the fiber is pre-compensated for the effect of bending; that is, an uncompensated bent fiber segment suffers high fundamental mode loss due to resonant coupling, whereas the pre-compensated bent fiber segment selectively couples any unwanted HOM from the core region into the pedestal region. In a preferred embodiment, the optical fiber is a LMA fiber incorporated in an optical fiber amplifier or laser package.
Owner:OFS FITEL LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products