Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1073 results about "Fiber amplifier" patented technology

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of the ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used.
Owner:IMRA AMERICA

Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier

An apparatus generates femtosecond pulses from laser amplifiers by nonlinear frequency conversion. The implementation of nonlinear frequency-conversion allows the design of highly nonlinear amplifiers at a signal wavelength (SW), while still preserving a high-quality pulse at an approximately frequency-doubled wavelength (FDW). Nonlinear frequency-conversion also allows for limited wavelength tuning of the FDW. As an example, the output from a nonlinear fiber amplifier is frequency-converted. By controlling the polarization state in the nonlinear fiber amplifier and by operating in the soliton-supporting dispersion regime of the host glass, an efficient nonlinear pulse compression for the SW is obtained. The generated pulse width is optimized by utilizing soliton compression in the presence of the Raman-self-frequency shift in the nonlinear fiber amplifier at the SW. High-power pulses are obtained by employing fiber amplifiers with large core-diameters. The efficiency of the nonlinear fiber amplifier is optimized by using a double clad fiber (i.e., a fiber with a double-step refractive index profile) and by pumping light directly into the inner core of this fiber. Periodically poled LiNbO3 (PPLN) is used for efficient conversion of the SW to a FDW. The quality of the pulses at the FDW can further be improved by nonlinear frequency conversion of the compressed and Raman-shifted signal pulses at the SW. The use of Raman-shifting further increases the tuning range at the FDW. For applications in confocal microscopy, a special linear fiber amplifier is used.
Owner:IMRA AMERICA

Single mode optical fiber

A large core photonic crystal fiber for transmitting radiation having a core comprising a substantially transparent core material and having a core diameter of at least 5 mu. The fiber also comprises a cladding region surrounding the length of core material, wherein the cladding region comprises a first substantially transparent cladding material, having a first refractive index, and wherein the first substantially transparent cladding material has embedded along its length a substantially periodic array of holes, wherein the holes are filled with a second cladding material having a second refractive index less than the first refractive index, such that radiation input to the optical fiber is transmitted along the length of the core material in a single mode of propagation. In a preferred embodiment, the core diameter may be at least 20 mu, and may be as large as 50 mu. The fiber is capable of transmitting higher power radiation than conventional fibres, whilst maintaining propagation in a single mode. The core material may be doped with a material capable of providing amplification under the action of pump radiation input to the fiber. The invention also relates to a fiber amplifier and a fiber laser comprising a doped large core photonic crystal fiber. The fiber may also be used in a system for transmitting radiation comprising a plurality of lengths of large core photonic crystal fiber, separated by large core photonic crystal fiber amplifiers, such that the power of radiation transmitted through the system is maintained above a predetermined threshold power.
Owner:NKT RES & INNOVATION

Laser-based material processing methods and systems

Various embodiments may be used for laser-based modification of target material of a workpiece while advantageously achieving improvements in processing throughput and / or quality. Embodiments of a method of processing may include focusing and directing laser pulses to a region of the workpiece at a pulse repetition rate sufficiently high so that material is efficiently removed from the region and a quantity of unwanted material within the region, proximate to the region, or both is reduced relative to a quantity obtainable at a lower repetition rate. In at least one embodiment, an ultrashort pulse laser system may include at least one of a fiber amplifier or fiber laser. Various embodiments are suitable for at least one of dicing, cutting, scribing, and forming features on or within a semiconductor substrate. Workpiece materials may also include metals, inorganic or organic dielectrics, or any material to be micromachined with femtosecond and / or picosecond pulses, and in some embodiments with pulse widths up to a few nanoseconds.
Owner:IMRA AMERICA

All-fiber integrated high power coherent beam combination

A fiber laser amplifier system including a master oscillator that generates a signal beam. A splitter splits the signal beam into a plurality of fiber beams where a separate fiber beam is sent to a fiber amplifier for amplifying the fiber beam. A tapered fiber bundle couples all of the output ends of all of the fiber amplifiers into a combined fiber providing a combined output beam. An end cap is optically coupled to an output end of the tapered fiber bundle to expand the output beam.
Owner:NORTHROP GRUMMAN SYST CORP

Wavelength-selective and loss-less optical add/drop multiplexer

A loss-less, optical add / drop multiplexer according to the present invention includes a rare earth-doped fiber amplifier integrated with a wavelength-selective fiber path coupled between two directional optical transfer devices for selectively adding and dropping optical signals from a multi-wavelength signal, such as a wavelength division multiplexed optical signal. One or more fiber gratings are disposed along the length of the rare earth-doped fiber amplifier or between segments of the rare earth-doped fiber so that at least one grating is used for reflecting each optical signal that is expected to be added to or dropped from the multi-wavelength optical signal. By using this configuration, appropriate amplification is provided to compensate for losses in the add, drop, and through paths.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE +1

All-fiber chirped pulse amplification systems

By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber / bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
Owner:IMRA AMERICA

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Light source unit and wavelength stabilizing control method, exposure apparatus and exposure method, method of making exposure apparatus, and device manufacturing method and device

The light source unit (16) comprises a single wavelength oscillation light source (160A), a light generating portion (160) which has an optical modulator (160C) converting and emitting light from the light source into a pulse light, a light amplifying portion (161) made up of an optical fiber group that each has a fiber amplifier to amplify the pulse light from the optical modulator, and a light amount controller (16C). The light amount controller (16C) performs a step-by-step light amount control by individually turning on / off the light output of each fiber making up the optical fiber group, and a light amount control of controlling at least either of the frequency or the peak power of the emitted pulse light of the optical modulator. Accordingly, in addition to the step-by-step light amount control, fine adjustment of the light amount in between the steps becomes possible due to the control of at least either the frequency or the peak power of the pulse light, and if the set light amount is within a predetermined range, the light amount can be made to coincide with the set light amount.
Owner:NIKON CORP

Laser-based material processing apparatus and methods

Various embodiments may be used for laser-based modification of target material of a workpiece while advantageously achieving improvements in processing throughput and / or quality. Embodiments of a method of processing may include focusing and directing laser pulses to a region of the workpiece at a pulse width sufficiently short so that material is efficiently removed by nonlinear optical absorption from the region and a quantity of heat affected zone and thermal stress on the material within the region, proximate to the region, or both is reduced relative to a quantity obtainable using a laser with longer pulses. In at least one embodiment, an ultrashort pulse laser system may include at least one of a fiber amplifier or fiber laser. Various embodiments are suitable for at least one of dicing, cutting, scribing, and forming features on or within a composite material.
Owner:IMRA AMERICA

Mode-locked multi-mode fiber laser pulse source

A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity. To amplify and compress optical pulses in a multi-mode (MM) optical fiber, a single-mode is launched into the MM fiber by matching the modal profile of the fundamental mode of the MM fiber with a diffraction-limited optical mode at the launch end, The fundamental mode is preserved in the MM fiber by minimizing mode-coupling by using relatively short lengths of step-index MM fibers with a few hundred modes and by minimizing fiber perturbations. Doping is confined to the center of the fiber core to preferentially amplify the fundamental mode, to reduce amplified spontaneous emission and to allow gain-guiding of the fundamental mode. Gain-guiding allows for the design of systems with length-dependent and power-dependent diameters of the fundamental mode. To allow pumping with high-power laser diodes, a double-clad amplifier structure is employed. For applications in nonlinear pulse-compression, self phase modulation and dispersion in the optical fibers can be exploited. High-power optical pulses may be linearly compressed using bulk optics dispersive delay lines or by chirped fiber Bragg gratings written directly into the SM or MM optical fiber. High-power cw lasers operating in a single near-diffraction-limited mode may be constructed from MM fibers by incorporating effective mode-filters into the laser cavity. Regenerative fiber amplifiers may be constructed from MM fibers by careful control of the recirculating mode. Higher-power Q-switched fiber lasers may be constructed by exploiting the large energy stored in MM fiber amplifiers.
Owner:FERMANN MARTIN E +1

Multi-channel fiber Bragg grating (FBG) demodulator

The invention discloses a multi-channel fiber Bragg grating (FBG) demodulator, which adopts a scanning fiber laser as a light source. The scanning fiber laser is on the basis of a micro-mechanical structural filter with temperature control, and belongs to a narrow-linewidth and high-coherent light source which is calibrated accurately. The calibration is implemented by a thermostable FP etalon with a wavelength label. A gain matching fiber amplifier amplifies the power of the output of a laser and achieves the power flatness of scanning laser spectroscopy. A fiber Bragg grating reflected signal enters a data acquiring and processing system after passing through a photoelectric detector and an AD converter processing module. A data acquiring and processing and peak detection system is implemented by adopting an FPGA-based all-digital scheme, and simultaneously utilizes a synchronous signal of a direct numerical frequency synthesis module to obtain a control voltage of the micro-mechanical structural filter. By combining with other equipment, the scanning fiber laser, the etalon and the FPGA realize the multichannel, high-precision, high-stability, high-repeatability, and serial-parallel structure detection of a grating sensor network signal.
Owner:BEIHANG UNIV

Electronically phase-locked laser systems

ActiveUS20090296751A1High output power levelDegrades beam qualityLaser detailsSemiconductor lasersFiberPower efficient
Semiconductor diode lasers are phase-locked by direct current injection and combined to form a single coherent output beam. The optical power is amplified by use of fiber amplifiers. Electronically control of the optical phases of each emitter enables power efficient combining of output beams to be maintained under dynamic conditions.
Owner:INTEL CORP

Apparatus and method of remote gas trace detection

InactiveUS20030030001A1Radiation pyrometryLaser detailsFrequency modulation spectroscopyEngineering
This specification discloses a method and apparatus for the mobile and remote detection of a gas, such as methane, in the atmosphere. The apparatus includes a TDL based Light Detection and Ranging (LIDAR) driven at carrier frequency lying within the absorption line of the gas. The apparatus also drives the TDL with a modulation frequency to generate upper and lower sidebands in the output of the TDL and with a low ramp frequency to sweep the output of the TDL across twice the width of the pressure-broadened absorption line of the gas, preferably the first overtone absorption line in the case of methane detection. Suitable power for remote detection through use of the TDL is provided by a master oscillator / fiber amplifier transmitter has no moving or adjustable parts at all. An all-solid-state monolithic and integrated amplifier is achieved, which leads to a compact and virtually maintenance-free LIDAR system. The remote detection apparatus includes reference and calibration cells or chambers, and includes a light collector and detectors to detect the quantity and modulation of the light that passes the reference or calibration cells and that is received by the apparatus after reflection back toward the apparatus from an uncooperative target. The apparatus further includes a signal processor that applies a derivative spectroscopy technique, such as frequency modulation spectroscopy or wavelength modulation spectroscopy, to determine the presence of the gas in the atmosphere.
Owner:GAS TECH INST

Multi-clad optical fiber lasers and their manufacture

An optical fiber is disclosed that can be used as an active medium in fiber lasers and / or fiber amplifiers, featuring a preferably rare-earth-doped silica active core surrounded by a pure or doped silica cladding layer ("pump core"). The pump core is surrounded by a doped or pure silica inner cladding for guiding pumping radiation within the pump core. Thus, the refractive index of the inner cladding is lower than that of the pump core. The fiber is surrounded by a protective coating made of polymeric material. One or more additional outer cladding layers, having refractive indexes lower than said inner cladding, may optionally be placed between the inner cladding and the protective coating to further protect the polymer coating from damage. Unlike the prior art, the protective coating does not serve as the only cladding, but is assisted by the inner cladding and optional outer cladding(s). The resultant fiber restricts radiation mainly to silica layers, thereby increasing the damage threshold and the applicable maximum pump power of the fiber.
Owner:BIOLITEC UNTERNEHMENSBETEILLIGUNGS II AG +1

COTDR (coherent detection based optical time-domain reflectometry) fused long-distance coherent detection brilouin optical time-domain analyzer

The invention discloses a COTDR (coherent detection based optical time-domain reflectometry) fused long-distance coherent detection brilouin optical time-domain analyzer which comprises a narrow-linewidth laser, two couplings, a microwave signal source, an electro-optic modulator, an isolator, a long-distance sensing optical fiber, an optical circulator, a 3 db coupling, a pulse modulator, an Er-doped fiber amplifier, a scrambler, a pulse signal generator, a balancing photoelectric detector, an electrical frequency spectrum analyzer, a data processing module and an acousto-optic modulator. According to the invention, the signal-to-noise ratio of BOTDA (brilouin optical time domain analysis) is improved by using a coherent detection method, a non-local effect of a BOTDA system is reduced in a double-sideband detection mode, and the sensing distance is more than 70 km under the condition of no light amplification such as raman; and according to the invention, the COTDR is fused to a coherent detection based BOTDA system, and the system can run in a breakpoint testing mode, so that the defect that the traditional BOTDA can not run when a sensing fiber has breakpoints and can not carry out positioning on breakpoints is effectively overcome, thereby enhancing the adaptability and practicability of the sensing system.
Owner:NANJING UNIV

Optical fiber with specialized index profile to compensate for bend-induced distortions

An optical fiber that exhibits reduced mode distortions as the fiber is bent is formed by properly defining its refractive index profile during fabrication. The as-fabricated profile is defined as a “pre-distorted” profile that takes into account the gradient introduced by bending the fiber. A parabolic index profile is one exemplary bend-resistant profile that exhibits a quadratic form. A raised-cone index is another profile that may be used as the “as-fabricated” profile. In any properly configured form, factors such as bend loss and mode distortion are significantly reduced, since the profile undergoes a shift of essentially constant gradient as a bend is introduced. The resultant effective area of the inventive fiber is substantially improved over state-of-the-art fiber that is subjected to bending during installation. The as-fabricated profile may be incorporated into various types of fibers (birefringent, photonic bandgap, etc.), and is particularly well-suited for use in a fiber amplifier arrangement.
Owner:OFS FITEL LLC

Passive all-fiber integrated high power coherent beam combination

A fiber laser amplifier system including a beam splitter that splits a feedback beam into a plurality of fiber beams where a separate fiber beam is sent to a fiber amplifier for amplifying the fiber beam. A tapered fiber bundle couples all of the output ends of all of the fiber amplifiers into a combined fiber providing a combined output beam. An end cap is optically coupled to an output end of the tapered fiber bundle to expand the output beam. A beam sampler samples a portion of the output beam from the end cap and provides a sample beam. A single mode fiber receives the sample beam from the beam sampler and provides the feedback beam.
Owner:NORTHROP GRUMMAN SYST CORP

Pulsed laser source with adjustable grating compressor

Various embodiments described herein relate to a laser source for producing a pulsed laser beam comprising a plurality of ultrashort optical pulses having a variable repetition rate. In one embodiment, the laser source comprises a fiber oscillator, which outputs optical pulses and a pulse stretcher disposed to receive the optical pulses. The optical pulses have an optical pulse width. The pulse stretcher has dispersion that increases the optical pulse width yielding stretched optical pulses. The laser source further comprises a fiber amplifier disposed to receive the stretched optical pulses. The fiber optical amplifier has gain so as to amplify the stretched optical pulses. The laser source includes an automatically adjustable grating compressor having dispersion that reduces the optical pulse width. The grating compressor automatically adjusts this dispersion for different repetition rates.
Owner:IMRA AMERICA

Fiber amplifier system for suppression of modal instabilities and method

ActiveUS20150138630A1Avoids and minimizes modal instabilitySame performanceLaser detailsFibre transmissionInstabilitySignal beam
Apparatus and method for suppressing modal instabilities (MI) in fiber-amplifier systems. In some embodiments, thermal effects drive the MI process, and in some such embodiments, the present invention provides a plurality of options for mitigating these thermal effects. In some embodiments, the present invention provides a hybrid fiber with a smaller core in the initial length where the thermal loads are highest, followed by a larger-core fiber. In some embodiments the length of the smaller-core section is chosen to keep the core heat-per-unit-length of the second section below a critical value for the onset of MI. In some embodiments, the hybrid fiber of the present invention avoids modal instabilities while yielding almost the same performance as compared to conventional fibers with regard to minimizing fiber nonlinearities such as Stimulated Brillouin Scattering (SBS). In some embodiments, the hybrid fiber outputs a signal beam with at least 1 kW of power.
Owner:LOCKHEED MARTIN CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products