Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

21345results about "Optical waveguide light guide" patented technology

Ultraviolet laser apparatus and exposure apparatus using same

An ultraviolet laser apparatus having a single-wavelength oscillating laser generating laser light between an infrared band and a visible band, an optical amplifier for amplifying the laser light, and a wavelength converting portion converting the amplified laser light into ultraviolet light using a non-linear optical crystal. An exposure apparatus transfers a pattern image of a mask onto a substrate and includes a light source having a laser apparatus emitting laser light having a single wavelength, a first fiber optical amplifier for amplifying the laser light, a light dividing device for dividing or branching the amplified laser light into plural lights, and second fiber optical amplifiers for amplifying the plural divided or branched lights, respectively, and a transmission optical system for transmitting the laser light emitted from the light source to the exposure apparatus.
Owner:NIKON CORP

Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes

The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.
Owner:CORNELL RES FOUNDATION INC

Optical fiber with quantum dots

Holey optical fibers (e.g. photonic fibers, random-hole fibers) are fabricated with quantum dots disposed in the holes. The quantum dots can provide light amplification and sensing functions, for example. When used for sensing, the dots will experience altered optical properties (e.g. altered fluorescence or absorption wavelength) in response to certain chemicals, biological elements, radiation, high energy particles, electrical or magnetic fields, or thermal / mechanical deformations. Since the dots are disposed in the holes, the dots interact with the evanescent field of core-confined light. Quantum dots can be damaged by high heat, and so typically cannot be embedded within conventional silica optical fibers. In the present invention, dots can be carried into the holes by a solvent at room temperature. The present invention also includes solid glass fibers made of low melting point materials (e.g. phosphate glass, lead oxide glass) with embedded quantum dots.
Owner:LAMBDA LABORATORY INSTRUMENTS +1

Multicore optical fibre

An optical fiber for transmitting radiation comprising two or more core regions, two or more core regions, each core region comprising a substantially transparent core material and having a core refractive index, a core length, and a core diameter, wherein said core regions are arranged within a cladding region, said cladding region comprising a length of first substantially transparent cladding material, having a first refractive index, wherein said first substantially transparent cladding material has an array of lengths of a second cladding material embedded along its length, wherein the second cladding material has a second refractive index which is less than said first refractive index, such that radiation input to said fiber propagates along at least one of said core regions. The cladding region and the core regions may be arranged such that radiation input to said optical fiber propagates along one or more said lengths of said core regions in a single mode of propagation. The optical fiber may be used as a bend sensor, a spectral filter or a directional coupler. The invention also relates to a method of manufacturing a multicore optical fiber.
Owner:NKT RES & INNOVATION

Prismatic multiple waveguide for near-eye display

A near-eye display includes a compound waveguide for presenting viewers with virtual images visible within an eyebox at a limited relief distance from the compound waveguide. The compound waveguide is assembled from a plurality of waveguides that are at least partially optically isolated for conveying different portions of the virtual image. An input couple injects the different portions of the virtual image into predetermined combinations of the waveguides, and an output coupling ejects the different portions of the virtual image from the waveguides toward the eyebox in a form that at least partially constructs a pupil within the eyebox.
Owner:VUZIX

Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure

A method of forming features on substrates by imprinting is provided. The method comprises: (a) forming a polymer solution comprising at least one polymer dissolved in at least one polymerizable monomer; and (b) depositing the polymer solution on a substrate to form a liquid film thereon; and then either: (c) curing the liquid film by causing the monomer(s) to polymerize and optionally cross-linking the polymer(s) to thereby form a polymer film, the polymer film having a glass transition temperature (Tg); and imprinting the polymer film with a mold having a desired pattern to form a corresponding negative pattern in the polymer film, or (d) imprinting the liquid film with the mold and curing it to form the polymer film. The temperature of imprinting is as little as 10° C. above the Tg, or even less if the film is in the liquid state. The pressure of the imprinting can be within the range of 100 to 500 psi.
Owner:HEWLETT PACKARD DEV CO LP

Laser ablation process and apparatus

InactiveUS20020045811A1Reduce Fresnel reflectionMaximize transmitted lightControlling energy of instrumentDiagnostics using spectroscopyFiberLaser light
A laser catheter is disclosed wherein optical fibers carrying laser light are mounted in a catheter for insertion into an artery to provide controlled delivery of a laser beam for percutaneous intravascular laser treatment of atherosclerotic disease. A transparent protective shield is provided at the distal end of the catheter for mechanically diplacing intravascular blood and protecting the fibers from the intravascular contents, as well as protecting the patient in the event of failure of the fiber optics. Multiple optical fibers allow the selection of tissue that is to be removed. A computer controlled system automatically aligns fibers with the laser and controls exposure time. Spectroscopic diagnostics determine what tissue is to be removed.
Owner:KITTRELL CARTER +2

Optical fiber

An improved optical fiber achieves both reduced bending and microbending losses, as well as a much higher Brillouin threshold, as compared to standard transmission fibers. The optical fiber comprises a core including at least two dopants and having a refractive index difference Δn1 with an outer optical cladding, a first inner cladding having a refractive index difference Δn2 with the outer cladding, and a depressed, second inner cladding having a refractive index difference Δn3 with the outer cladding of less than −3×10−3. The radial concentration of at least one of the core dopants varies continuously over the entire core region of the optical fiber.
Owner:DRAKA COMTEQ BV

Use of amorphous carbon film as a hardmask in the fabrication of optical waveguides

Methods are provided for forming optical devices, such as waveguides, with minimal defect formation. In one aspect, the invention provides a method for forming a waveguide structure on a substrate surface including forming a cladding layer on the substrate surface, forming a core layer on the cladding layer, depositing an amorphous carbon hardmask on the core layer, forming a patterned photoresist layer on the amorphous carbon hardmask, etching the amorphous carbon hardmask, and etching the core material.
Owner:APPLIED MATERIALS INC

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of the ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used.
Owner:IMRA AMERICA

Super-large-effective-area (SLA) optical fiber and communication system incorporating the same

A super-large-effective-area (SLA) optical fiber that is suitable for communicating over a wide wavelength range and that, because of its large effective area, suppresses nonlinear effects that typically result from interaction between signal channels. The effective area, Aeff, of the SLA fiber of the present invention preferably is equal to or greater than approximately 80 μm2 at a wavelength window around 1310 nm. The cutoff wavelength of the SLA fiber of the present invention preferably is less than 1310 nm. Thus, the SLA fiber of the present invention has a very large effective area and a very low cutoff wavelength. In accordance with the present invention, a variety of SLA fibers are provided that all have very large effective areas and desirable transmission properties. The large effective areas of the SLA fibers of the present invention enable nonlinear effects to be suppressed, as well as Stimulated Brillouin Scattering in analog transmission. The large effective areas also enable attenuation to be reduced. The result of suppressing nonlinear effects and reducing attenuation enable signals to be transmitted over long distances and over a broad bandwidth.
Owner:FURAKAWA ELECTRIC NORTH AMERICA INC

Large effective area fiber

An optical fiber according to an embodiment of the present invention comprises: a glass core extending from a centerline to a radius R1 wherein R1 is greater than about 5 μm; a glass cladding surrounding and in contact with the core, the cladding comprising: (i) a first annular region extending from the radius R1 to a radius R2, the first annular region comprising a radial width, W2=R2−R1, (ii) a second annular region extending from the radius R2 to a radius R3, and comprising a radial width, W3=R3−R2, and (iii) a third annular region surrounding the second annular region and extending from the radius R3 to an outermost glass radius R4; wherein the core comprises a maximum relative refractive index, Δ1MAX, relative to the third annular region, and wherein Δ1MAX is greater than about 0.1% and less than about 0.3%; the first annular region has a refractive index delta Δ2(r) is less than about 0.025%; wherein the second annular region comprises a minimum relative refractive index, Δ3MIN, relative to the third annular region;wherein Δ1MAX>Δ2MAX>Δ3MIN, and Δ2MIN>Δ3MIN<0; andwherein the core and the cladding provide a fiber with cable cutoff less than 1500 nm, and an effective area at 1550 nm greater than 95 μm2 and bend loss of ≦0.5 dB / turn on a 20 mm diameter mandrel.
Owner:CORNING INC

Vertical comb drive actuated deformable mirror device and method

A deformable mirror includes a vertical comb actuator having a reflective surface attached thereto. The vertical comb drive includes stationary elements interspersed with moving elements. When a potential difference is provided between these elements, the moving elements are pulled downward, thereby deforming the reflective surface. The vertical comb drive typically includes a plurality of actuators, which are individually electrically addressed. Each actuator may be an array of interspersed elements or a cavity and corresponding tooth. Springs support the moving elements and bias the reflective surface in an original position. The vertical comb drive provides a large stroke and substantially linear voltage-versus-displacement curve throughout the stroke.
Owner:MEMS OPTICAL

Optically oriented three-dimensional polymer microstructures

A method and system of creating one or more waveguides and / or patterning these waveguides to form a 3D microstructure that uses mask and collimated light. In one embodiment, the system includes at least one collimated light source selected to produce a collimated light beam; a reservoir having a photo-monomer adapted to polymerize by the collimated light beam; and a mask having at least one aperture and positioned between the at least one collimated light source and the reservoir. Here, the at least one aperture is adapted to guide a portion of the collimated light beam into the photo-monomer to form the at least one polymer waveguide through a portion of a volume of the photo-monomer.
Owner:HRL LAB

Solid state light emitting device and method of making same

There is provided a solid state light emitting device comprising at least one light emitting active layer structure and at least one structure selected from among: (1) a first element having at least a first region which has an index of refraction gradient, (2) a first element, at least a portion of which has an index of refraction which is lower than an index of refraction of a side of the active layer, (3) first and second elements, in which one side of the second element is positioned on a side of the active layer and the first element is positioned on the other side of the second element, and in which at least a portion of the first element has an index of refraction which is lower than the index of refraction of at least a portion of the second element. Also provided are methods of making such devices.
Owner:CREELED INC

Photovoltaic devices fabricated from nanostructured template

Photovoltaic devices, such as solar cells, and methods for their manufacture are disclosed. A device may be characterized by an architecture having a nanostructured template made from an n-type first charge transfer material with template elements between about 1 nm and about 500 nm in diameter with about 1012 to 1016 elements / m2. A p-type second charge-transfer material optionally coats the walls of the template elements leaving behind additional space. A p-type third charge-transfer material fills the additional space volumetrically interdigitating with the second charge transfer material.
Owner:AERIS CAPITAL SUSTAINABLE IP

System and method for network vulnerability detection and reporting

A system and method provide comprehensive and highly automated testing of vulnerabilities to intrusion on a target network, including identification of operating system, identification of target network topology and target computers, identification of open target ports, assessment of vulnerabilities on target ports, active assessment of vulnerabilities based on information acquired from target computers, quantitative assessment of target network security and vulnerability, and hierarchical graphical representation of the target network, target computers, and vulnerabilities in a test report. The system and method employ minimally obtrusive techniques to avoid interference with or damage to the target network during or after testing.
Owner:MCAFEE LLC

Device for expanding an exit pupil in two dimensions

A diffractive beam expander (50) comprises an input grating (10), a crossed grating (20), and an output grating (30) implemented on a planar transparent substrate (7). The crossed grating (20) comprises a plurality of diffractive features (23) arranged along the lines of a first set of parallel lines (25) and along the lines of a second set of parallel lines (26) such that the lines (25) of the first set are parallel to the lines (26) of the second set. The lines of the first set have a first grating period and the lines of the second set have a second grating period. A light beam (B1) coupled into the substrate (7) by the input grating (10) impinges on the crossed grating (20) at a first location (EC1) and further locations (EC2). Interaction at the first location (EC1) provides several sub-beams (S00, S01, S10) which propagate in different directions. Further interactions at second locations (EC2) provide further sub-beams (V01, U10) which propagate in the same direction as the original in-coupled light (B1). Light is subsequently coupled out of the substrate (7) by the output grating (30) to provide a light beam (B2) which is expanded in two directions (SX, SZ) with respect to the beam (B0) impinging on the input grating. A virtual display device (200) may comprise said diffractive beam expander (50).
Owner:MAGIC LEAP INC

Semiconductor optoelectronic device and method of fabricating the same

Provided is a semiconductor opto-electronic device that may comprise an active layer including a quantum well and a barrier layer on a substrate, upper and lower waveguide layers on and underneath the active layer, respectively, and upper and lower clad layers on and underneath the upper and lower waveguide layers, respectively. The semiconductor opto-electronic device may further comprise an upper optical confinement layer (OCL) between the active layer and the upper waveguide layer and having an energy gap smaller than the energy gap of the upper waveguide layer and equal to or larger than the energy gap of the barrier layer, and a lower OCL between the active layer and the lower waveguide layer and having an energy gap smaller than the energy gap of the lower waveguide layer and equal to or smaller than the energy gap of the barrier layer. Also provided is a method of fabricating the semiconductor opto-electronic device.
Owner:SAMSUNG ELECTRONICS CO LTD

Far-field display

A flat-panel projection display comprises a transparent slab and integral area grating, a transparent rod with rectangular cross-section and integral linear grating, arranged along the edge of the slab, and a small video projector. The projector is arranged to direct a virtual image into the end of the rod, directly or via mirrors, the light travelling along the rod via total internal reflection. The linear grating diverts the light into the plane of the slab, and the area grating projects it out of the slab towards a viewer, so that the viewer sees an image at infinity.
Owner:MICROSOFT TECH LICENSING LLC

Multi-layer opto-electronic substrates with electrical and optical interconnections and methods for making

Opto-electrical systems having electrical and optical interconnections formed in thin layers are disclosed. In one set of preferred embodiments, optical signals are conveyed between layers by respective vertical optical couplers disposed on the layers. In other preferred embodiments, optical signals are conveyed by stack optical waveguide coupling means. Yet other preferred embodiments have electrical via means formed in one or more layers to covey electrical signals between two or more layers.
Owner:FUJITSU LTD

Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides

InactiveUS20050024849A1Small in in lengthSmall in widthMechanical apparatusFlat articlesEngineeringRidge
The methods involve using a tool to cut or form multiple optical element shaped cavities in a surface of a substrate without rotating the tool or substrate during the cutting or forming process. At least some of the cavities are cut or formed to have at least two surfaces that come together to form a ridge and that are quite small relative to the length and width of the substrate. Thereafter the substrate is used to form optical films, components or wave guides having multiple optical elements on at least one surface corresponding to the cavities in the substrate.
Owner:SOLID STATE OPTO

Low bend loss optical fiber

Disclosed is a low bend loss optical fiber including: a core; an inner layer disposed at outside of the core, which has a refractive index lower than a refractive index of the core, the refractive index of the inner layer gradually decreasing as it becomes farther from the core; and a trench layer disposed at outside of the inner layer, which has a lowest refractive index.
Owner:SAMSUNG ELECTRONICS CO LTD

Optical fiber cable

An optical fiber cable has an optical fiber core wire and a tension member. The tension member is formed of a glass fiber reinforced resin linear material with glass fibers and a matrix resin, and satisfies the following requirements: (1) (EfVf+EmVm)d2≧8.3 / n wherein Ef represents the modulus of elasticity of glass fibers, GPa; Vf represents the content of glass fibers, % / 100; Em represents the modulus of elasticity of matrix resin, GPa; Vm represents the content of matrix resin, % / 100; d represents the diameter of tension member, mm; and n represents the number of tension members used in optical fiber cable; (2) (Ef / Em)≧22; (3) Vf=0.6 to 0.88; and (4) an elongation at break of glass fibers of not less than 5% and an elongation at break of matrix resin of not less than 5%.
Owner:HITACHI CABLE

Optical device for repositioning and redistributing an LED's light

An optical device is for spatially displacing the output of a light-emitting diode (LED) and coupling the output to a predominantly spherical emission pattern produced at a useftul height above the LED. The device is made of a transparent dielectric material, such as an injection-molded plastic. It comprises a lower transfer section that receives the LED's light from below and an upper ejector section that receives the transferred light and spreads it spherically. One or more LEDs. are optically coupled to the bottom of the transfer section, which operates by total internal reflection upon their entire hemispherical emission. One embodiment operates as a flashlight-bulb substitute with the ejector section radiating onto a parabolic reflector, which forms the beam. Thus hemisphencally emitting LEDs can be used in parabolic-mirror flashlights wherein these LEDs by themselves may be unsuitable for that role.
Owner:LIGHT ENGINE

Holey optical fibres

An optical fiber structure having a holey fiber arranged in a holey outer support structure made up of holey tubes encased in a thin walled outer jacket. The holey fiber may have a solid core surrounded by a holey cladding having a plurality of rings of holes. With the invention it is possible to produce robust, coated and jacketed fibers with microstructured core features of micrometer size relatively easily using existing fiber fabrication technology. This improvement is a result of the outer holey structure which reduces the thermal mass of the supporting structure and makes it possible to reliably and controllably retain small hole features during the fiber fabrication process.
Owner:UNIV OF SOUTHAMPTON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products