Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1754 results about "Beam expander" patented technology

Beam expanders are optical devices that take a collimated beam of light and expand its size (or, used in reverse, reduce its size). In laser physics they are used either as intracavity or extracavity elements. They can be telescopic in nature or prismatic. Generally prismatic beam expanders use several prisms and are known as multiple-prism beam expanders.

Device for expanding an exit pupil in two dimensions

A diffractive beam expander (50) comprises an input grating (10), a crossed grating (20), and an output grating (30) implemented on a planar transparent substrate (7). The crossed grating (20) comprises a plurality of diffractive features (23) arranged along the lines of a first set of parallel lines (25) and along the lines of a second set of parallel lines (26) such that the lines (25) of the first set are parallel to the lines (26) of the second set. The lines of the first set have a first grating period and the lines of the second set have a second grating period. A light beam (B1) coupled into the substrate (7) by the input grating (10) impinges on the crossed grating (20) at a first location (EC1) and further locations (EC2). Interaction at the first location (EC1) provides several sub-beams (S00, S01, S10) which propagate in different directions. Further interactions at second locations (EC2) provide further sub-beams (V01, U10) which propagate in the same direction as the original in-coupled light (B1). Light is subsequently coupled out of the substrate (7) by the output grating (30) to provide a light beam (B2) which is expanded in two directions (SX, SZ) with respect to the beam (B0) impinging on the input grating. A virtual display device (200) may comprise said diffractive beam expander (50).
Owner:MAGIC LEAP INC

A diffractive beam expander and a virtual display based on a diffractive beam expander

A diffractive beam expander (50) comprises a substantially planar waveguiding substrate, an input grating (10) to provide an in-coupled beam (B1) propagating within said substrate, and an output grating (30) to provide an out-coupled beam. The expander (50) comprises also four or more further grating portions to expand the height of the in-coupled beam (B1). A part of the in-coupled light is diffracted by a first deflecting grating portion (21a) to provide a first deflected beam. A part of the in-coupled light is diffracted by a second deflecting grating portion (22a) to provide a second deflected beam. The first deflected beam propagates downwards and the second deflected beam propagates upwards with respect to the in-coupled beam (B1). The first deflected beam impinges on a first direction-restoring grating portion (21b) and the second deflected beam impinges on a second direction-restoring grating portion (22b). The first restoring grating portion (21b) provides a first restored beam (V1) and the second restoring grating portion (22b) provides a second restored beam (V2), which both have the same direction as the in-coupled beam (B1). Out-coupling provides an output beam which is parallel to the input beam, and has a greater vertical dimension than said input beam.
Owner:MAGIC LEAP

Taper-controllable laser micropore machining light beam scanning device and control method thereof

The invention relates to a taper-controllable laser micropore machining light beam scanning device. The device comprises a laser device and a sample piece to be machined, wherein a beam expander is arranged on the emergent surface of the laser device; a 45-degree reflecting mirror is arranged on the emergent surface of the beam expander; a non-parallel double optical wedge group and a small-angle optical wedge are vertically distributed below the 45-degree reflecting mirror in sequence; a focusing mirror and the sample piece to be machined are vertically distributed below the small-angle optical wedge in sequence; and a laser beam is expanded and collimated by the beam expander, is emitted to the 45-degree reflecting mirror, is reflected by the 45-degree reflecting mirror, is vertically emitted to the non-parallel double optical wedge group below the 45-degree reflecting mirror and is translated and deflected to a certain degree through the non-parallel double optical wedge group, and the deflected beam is refracted to the focusing mirror through the small-angle optical wedge, and is focused on the sample piece to be machined by the focusing mirror. Compared with a galvanometric scanning micropore machining device, the device is high in accuracy; the number of the optical wedges is reduced by one, so that the device is convenient to mount; the number of driving motors and wedge mirrors is reduced by one, so that the device is easy to control; and the loss of laser energy is reduced, and cost is greatly reduced.
Owner:CHINA KEHAN LASER FUJIAN

System and method for preparing micro-pore array through femtosecond laser direct writing

The invention discloses a system and a method for preparing a micro-pore array through femtosecond laser direct writing. The system comprises a femtosecond vector light field generation system, a spatial filtering component, a computer and a three-dimensional mobile platform, wherein a 1/2 wave plate, a Glan-laser polarizer, a beam expander and the femtosecond vector light field generation system are arranged on an output straight light path of a femtosecond laser device in sequence; a 4f system is arranged on a light path behind a reflective pure phase spatial light modulator after a holographic phase plate is loaded; a spatial filter is arranged on a frequency spectrum surface; and positive and negative levels of diffraction light which pass through the spatial filter pass through a 1/4 wave plate respectively and are combined into a beam of laser through a Rochi grating. A material is adjusted to a focal position through the spatial filtering component, an electronic diaphragm, a focusing lens and the three-dimensional mobile platform; and the spatial light modulator, the electronic diaphragm and the three-dimensional mobile platform are connected with a computer through data lines. The device has the advantages of simple structure, convenience in operation and capabilities of preparing the micro-pore array with various patterns and improving the machining efficiency.
Owner:NANKAI UNIV

Super-resolution laser polarization differential confocal imaging method and device

The invention belongs to the technical field of optical precision measurement, relating to super-resolution laser polarization differential confocal imaging method and device. The method improves the transverse resolution power by combining a radial polarized light and a pupil filtering technology, improves the axial resolution power by using a differential subtraction detection technology of an axial-offset dual-detector system and remarkably improves the spatial resolution power and tomography ability of the system. The device comprises a laser source as well as a beam expander, a polarization state modulation system, a pupil filter and a spectroscope which are sequentially arranged at a transmitting end of the laser source, an objective and a sample which are arranged in the transmitted light direction of the spectroscope in turn, and a differential confocal system in the opposite direction of the reflected light direction of the spectroscope. The invention combines the radial polarized light resolution technology with the pupil filtering technology and improves the transverse resolution power of the system; moreover, the differential work mode of the invention can remarkably improve the axial imaging ability of the system and is applicable to the high-precision detection and metering of nanometer-level geometrical parameters in the nanometer manufacturing field.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Device and method for abnormally cutting toughened glass by ultra-short pulse laser

The invention relates to a device and method for abnormally cutting a toughened glass by ultra-short pulse laser. An output end of an ultra-short pulse laser apparatus is provided with an optical gate, an output end of the optical gate is provided with a beam expander, an output end of the beam expander is provided with a 45-degree holophote, an output end of the 45-degree holophote is provided with a three-dimensional (3D) dynamical focusing system, an output end of the 3D dynamical focusing system is provided with a telecentric field lens which is arranged facing to a platform above which a blowing device is arranged. When the ultra-short pulse laser device is used to cut, a heating device is used for heating the glass; the ultra-short pulse laser is focused in the glass by the 3D dynamical focusing system to abnormally scan the glass along with the laser, and the whole processing procedure is in helical processing; a suction dust-collecting device at the bottom of the platform is used for collecting the scanned glass slag; and the blowing device on the platform is used for blowing the slag and dust particles processed on the surface of the glass. The abnormal graph processing to the toughened glass is a processing form with smooth cutting surface and high cutting efficiency.
Owner:SUZHOU DELPHI LASER

Equipment and method for single-cylinder type selective laser melting and milling composite processing

The invention discloses equipment and a method for single-cylinder type selective laser melting and milling composite processing. The equipment comprises a selective laser melting forming device, a vertical milling machine device and a central control system, wherein the vertical milling machine device is positioned in a forming chamber and comprises a chain type tool magazine, the chain type tool magazine is positioned at the right side of the exterior of the forming chamber, a laser device is positioned at the right side of the forming chamber of the selective laser melting forming device, a collimating beam expander, an optical lens and a scanning vibration lens are arranged at the top part of the forming chamber, and the optical lens is positioned at the upper part of the forming chamber, is embedded in the outer wall of the forming chamber, and is in sealed combination with the outer wall of the forming chamber. The equipment has the advantages that the size accuracy and surface quality of a forming part are improved, so the organic combination of additive manufacturing and high-accuracy milling processing is realized; by closing an automatic tool switching valve and a tool switching opening, the influence on a milling tool caused by metal powder and residual heat during laser processing is avoided, the quality of the milling tool is guaranteed, and the service life is prolonged.
Owner:SOUTH CHINA UNIV OF TECH

Underwater video camera system based on polarization identification and method thereof

The invention relates to the technical field of optical instruments, in particular to an underwater video camera system based on polarization identification and a method thereof. The technical scheme is that the underwater video camera system comprises an underwater light source, a polarization modulation part and an image acquisition and processing part, wherein the underwater light source comprises a semiconductor laser, an optical filter, a polarizer, a polarization rotator and a beam expander; the polarization modulation part comprises an analyzer, a stepper motor, a stepper motor controller and an infrared detector; and the image acquisition and processing part comprises a high-frequency CCD (Charge Coupled Device) video camera, an image acquisition system and a computer. The underwater video camera system has the benefits that with the adoption of the underwater camera system and the method, the contrast degree and the definition of target imaging as well as the target detectionand the identification efficiency can be effectively improved; the polarization imaging can utilize the differences of different target back polarizations to eliminate the interference of background light; and as a means for identifying the target from messy background is provided, the method has remarkable advantage as compared with the commoner method for imaging and identifying the target by using light intensity.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Device and method for ultrafast picosecond pulse laser machining of super-hydrophobicity micro-structure surface

A device and a method for ultrafast picosecond pulse laser machining of a super-hydrophobicity micro-structure surface belong to the field of preparation of functional micro-structure surfaces, and aim to solve the problems of high investment and low output of an existing machining process and existing machining technology for functional elements. The device comprises an ultrafast picosecond pulse laser source, an optical isolator, five reflectors, a rotary liquid crystal polarizing film, a polarization beam splitter, two beam collectors, a half wave plate, a focusing lens, frequency-doubling generator LBO (lithium triborate) crystal, a dichroic mirror, a light control device, a beam profile curvometer, a beam amplifying component Kepler beam expander, a focusing machining lens, a machining platform, a microscopy imaging CCD (charge coupled device) component and a control system. The method includes the stepsof: fixing a steel workpiece onto a surface driven by a Z-directional guide rail of the machining platform; adjusting a light path; detecting the surface of the workpiece by a probe; and driving the workpiece to move by means of movement of an X-directional guide rail and a Y-directional guide rail of the machining platform. The device and the method are used for preparing the super-hydrophobicity micro-structure surface.
Owner:HARBIN INST OF TECH

Single-pixel terahertz holographic imaging device and method

The invention discloses a single-pixel terahertz holographic imaging device and method. Monochromatic terahertz light emitted by a terahertz laser source is transformed into parallel light with larger beamwidth by a beam expander device, and then divided into object light and reference light through a beam splitter; the object light is encoded by a modulation device in airspace after irradiating an object; the reference light passes through an adjustable phase shifter on the light path after being reflected by a plane mirror; the object light is converged with the reference light on a second beam splitter after being reflected by the plane mirror, enters a single-pixel detector at the focus point of a condenser lens after being converged by the condenser lens; a signal output by the single-pixel detector is fed to a control module to carry out image reconstruction; and terahertz holographic compression sensing imaging of the object is achieved by changing combination of a space code on the modulation device and a phase on the adjustable phase shifter for a plurality of times. The single-pixel terahertz holographic imaging device and method have the advantages that real three-dimensional imaging of the tested object is achieved by combining phase-shifting digital holography with a compression sensing principle, and the single-pixel terahertz holographic imaging device and method are pioneering inventions in the field of terahertz imaging.
Owner:博微太赫兹信息科技有限公司

Real-time calibration high spectral resolution lidar device

The invention relates to a real-time calibration high spectral resolution lidar device for measuring atmospheric wind field. The invention comprises a transmitting system composed of a pulse laser, a beam expander and a reflector, a receiving system composed of a telescope, optical filters, a molecular iodine filter, beam splitters and photoelectric detectors, a data acquisition system connected with the photoelectric detectors, and a data processing computer. The invention is characterized by also comprising two receiving channels of the rotational Raman, and the two receiving channels of the rotational Raman are connected in parallel by the beam splitters, extracts atmospheric molecule rotational Raman spectrum from the original detecting signal, and connected with the data acquisition system, the data acquisition system is connected with the data processing computer and transmits the acquired information to the data processing computer. The invention is characterized in that gasoloid relative concentration and atmospheric parameters are obtained from primary optical detection, and simultaneously wind speed refutation is carried out, measurement efficiency and measurement accuracy are improved with the wind speed measurement accuracy reaching 1m/s.
Owner:OCEAN UNIV OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products