Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

6285 results about "Laser processing" patented technology

Laser machining method and device applicable for complicated curved surface

The invention provides a laser machining method applicable for a complicated curved surface. By adopting processing steps of dividing the complicated curved surface into curved surface sheets and establishing a coordinate system of each curved surface sheet, the subsequent processing steps of dividing sub blocks and machining pattern parallel projection can be implemented according to the coordinates of the curved surface sheets respectively, so the limit that a machining molded surface backing to a laser incident direction or a steep surface parallel to an optical axis direction cannot be machined because only one coordinate system is adopted to perform whole injection in the prior art can be overcome, the machining efficiency is improved and the machining applicable range is extended. The invention also provides a laser machining device. The laser machining device has a three-axis laser machining head structure provided with a two-axis laser polarization mirror and a Z-axis mobile mechanism, so the problem that the conventional system depends on a three-axis lathe is solved; therefore, a machining unit is independent and compact, and is easy to assemble and disassemble; the conventional five-axis linkage milling machine can be changed into a laser-etching machining lathe so that the functions are compatible; and the laser machining device has a significant practical value.

Method for projection-type laser etching on free curved surface

The invention discloses a method for projection-type laser etching on a free curved surface. By combining a laser galvanometer as well as a triaxial coordinate positioning technology and adopting the principles of partitioned parallel projection as well as height mapping, the invention directly conducts precise surface laser etching on the basis of a discrete point cloud model of a free curved surface part. The method has the characteristic that the laser etching properties such as the shape and size of a spot and the energy distribution remain unchanged within the focal depth range of a focusing lens, so that the free curved surface is converted into a plurality of plane subblocks for processing, and the high-precision processing efficiency of the free curved surface can be improved even by adopting the existing laser etching technology. The diameter of the focusing spot of a laser beam can reach tens of microns and is much smaller than the size of the part processed by a traditional knife tool; and the processing precision of nearly 10 microns can be realized by controlling the laser energy property. Under the premise of meeting the demands for high precision and high efficiency of pattern etching on the free curved surface, the method can realize high reliability and high flexibility in the processing of the free curved surface.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products