Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2781 results about "Depth direction" patented technology

Semiconductor device and method of manufacturing the same

In the manufacture of a semiconductor device by adopting a block molding method wherein a semiconductor chip is fixed onto a wiring substrate through an adhesive, the occurrence of a defect caused by flowing-out of the adhesive is to be prevented. The semiconductor device according to the present invention comprises a wiring substrate, the wiring substrate having a main surface, an insulating film formed on the main surface, and electrodes formed on the main surface so as to be exposed from the insulating film, a semiconductor chip fixed through an adhesive onto the insulating film formed on the main surface of the wiring substrate, conductive wires for connecting the electrodes on the main surface of the wiring substrate and electrodes on the semiconductor chip with each other, and a seal member, i.e., a package, which covers the semiconductor chip, the main surface of the wiring substrate and the electrodes, wherein a groove is formed between the semiconductor chip and the electrodes and the seal member and the wiring substrate have side faces cut by dicing. A protruding portion of the adhesive (an insulating resin) stays within the groove without getting over the groove and does not reach the electrodes. The groove is formed by removing the insulating film partially in the full depth direction of the film so as to extend through the film.
Owner:RENESAS ELECTRONICS CORP

Mesa-type bipolar transistor

In conventional mesa-type npn bipolar transistors, the improvement of a current gain and the miniaturization of the transistor have been unachievable simultaneously as a result of a trade-off being present between lateral diffusion and recombination of the electrons which have been injected from an emitter layer into a base layer, and a high-density base contact region—emitter mesa distance. In contrast to the above, the present invention is provided as follows:
    • The gradient of acceptor density in the depth direction of a base layer is greater at the edge of an emitter layer than at the edge of a collector layer. Also, the distance between a first mesa structure including the emitter layer and the base layer, and a second mesa structure including the base layer and the collector layer, is controlled to range from 3 μm to 9 μm. In addition, in order for the above to be implemented with high controllability, the base layer is formed of a first p-type base layer having an acceptor of uniform density, and a second p-type base layer whose density is greater than the uniform acceptor density of the first base layer while having a gradient in the depth direction of the second base layer. These features produce the advantageous effect that it is possible to provide a high-temperature adaptable, power-switching bipolar transistor that ensures a current gain high enough for practical use and is suitable for miniaturization.
Owner:HITACHI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products