Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

948 results about "Beam control" patented technology

Dual-feed series microstrip patch array

A sub-array of slot-coupled microstrip antennas fed using microstrip lines on an opposing substrate. Also provided is an omni-directional antenna comprised of six of the sub-arrays arranged in a hexagonal fashion. The gain of the antenna is ˜6 dB with a 3 dB elevation beam width of ˜30 degrees. The design provides constant beam angle over frequency, which is important for frequency-hopping applications, and the potential to add beam control to mitigate jamming in different sectors.
Owner:UNIV OF SOUTH FLORIDA

2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES

The present disclosure describes a system and method for coaxial LiDAR scanning. The system includes a first light source configured to provide first light pulses. The system also includes one or more beam steering apparatuses optically coupled to the first light source. Each beam steering apparatus comprises a rotatable concave reflector and a light beam steering device disposed at least partially within the rotatable concave reflector. The combination of the light beam steering device and the rotatable concave reflector, when moving with respect to each other, steers the one or more first light pulses both vertically and horizontally to illuminate an object within a field-of-view; obtain one or more first returning light pulses, the one or more first returning light pulses being generated based on the steered first light pulses illuminating an object within the field-of-view, and redirects the one or more first returning light pulses.
Owner:INNOVUSION INC

Waveguide architecture, waveguide devices for laser processing and beam control, and laser processing applications

Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.
Owner:GSI LUMONICS LTD

In vivo planning and treatment of cancer therapy

A system and method for delivering radiation to an object. A computer tomography machine generates CT data of the object. A radiation source with an output beam is directed to a predetermined irradiation field of the object. A detector above the object controls the output beam to the predetermined irradiation field of the object. A processor calculates the dose to the predetermined irradiation field of the object. Another detector below the object which measures the radiation delivered to the object.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Machine and Method for Additive Manufacturing

A three-dimensional additive manufacturing device which can construct a shaped object by using a plurality of types of metal powder, a three-dimensional additive manufacturing system, and a three-dimensional additive manufacturing method are provided.A three-dimensional additive manufacturing device 100 includes a stage 4, a beam irradiation portion 8, a storage portion, 42, a control portion 40, and a powder supply unit. The powder supply unit has a plurality of powder accommodating portions accommodating a plurality of types of metal powder and discharging the plurality of types of Metal powder to the stage 4 and a holding mechanism for holding a plurality of powder accommodating portions and spreads the plurality of types of metal powder on the stage 4. The control portion 40 controls the powder supply unit so as to spread the plurality of types of metal powder on the stage 4 and controls the beam irradiation portion 8 so as to emit a charged particle beam with an output according to each metal powder on the basis of beam control data 64 read out of the storage portion 42.
Owner:JEOL LTD

Low cost multiple pattern antenna for use with multiple receiver systems

An antenna assembly includes at least two active or main radiating omni-directional antenna elements arranged with at least one beam control or passive antenna element used as a reflector. The beam control antenna element(s) may have multiple reactance elements that can electrically terminate it to adjust the input or output beam pattern(s) produced by the combination of the active antenna elements and the beam control antenna element(s). More specifically, the beam control antenna element(s) may be coupled to different terminating reactances to change beam characteristics, such as the directivity and angular beam width. Processing may be employed to select which terminating reactance to use. Consequently, the radiator pattern of the antenna can be more easily directed towards a specific target receiver / transmitter, reduce signal-to-noise interference levels, and / or increase gain. A Multiple-Input, Multiple-Output (MIMO) processing technique may be employed to operate the antenna assembly with simultaneous beam patterns.
Owner:IPR LICENSING INC

Interferometry system having a dynamic beam steering assembly for measuring angle and distance

In one aspect, the invention features an angle-measuring interferometry system that includes an interferometer which during operation directs a measurement beam to contact a measurement object, the interferometer comprising a beam steering assembly having a beam steering element positioned to contact and direct the measurement beam and an electronic positioning system to selectively orient the beam steering element within the interferometer. The angle-measuring interferometry system also includes an angle measurement system which during operation calculates a change in angular orientation of the measurement object based on a measurement signal derived from the measurement beam, wherein the measurement signal is derived from at least one interferometric signal produced by combining at least a portion of the measurement beam with a second beam after the measurement beam contacts the measurement object.
Owner:ZYGO CORPORATION

Phased array radar antenna beam control device

The invention relates to a phased array radar antenna beam control device. The phased array radar antenna beam control device comprises a remote control PC (Personal Computer) computer, a user control computer module, a power supply management module, a FPGA (Field Programmable Gate Array) chip, a signal driver, a wave control conversion circuit and a controlled device which is electrically connected with the wave control conversion circuit, wherein the user control computer module remotely communicates with the remote control PC computer and are electrically connected with the FPGA chip, thepower supply management module and the wave control conversion circuit, respectively. The FPGA chip is embedded with a PowerPC hardcore and used for constructing an embedded computer; the embedded computer also comprises an Ethernet (Media Access Control), a UART (Universal Asynchronous Receiver Transmitter) controller, a DDR2SDRAM (Double Data Rate 2 Synchronous Dynamic Random Access Memory) memory module, a FLASH controller module, a parallel controller, a FPGA configuration circuit module and a clock generating circuit module. The phased array radar antenna beam control device provided by the invention has the advantage of high reliability.
Owner:CHINA ELECTRONIC TECH GRP CORP NO 38 RES INST

Beam control system with extended beacon and method

A beam control system and method: The inventive system includes, an arrangement for receiving a first beam of electromagnetic energy; measuring wavefront aberrations in the first beam with a wavefront sensor; and removing global tilt from the measured wavefront aberrations to provide higher order aberrations for beam control. In the illustrative embodiment, the invention uses a traditional (quad-cell) Shack-Hartmann wavefront sensor to measure wavefront aberrations. An adaptive optics processor electronically removes the global tilt (angular jitter) from this measurement leaving only the higher-order Zernike components. These higher-order aberrations are then applied to wavefront control elements, such as deformable mirrors or spatial light modulators that correct the tracker image and apply a conjugate distortion to the wavefront of the outgoing HEL beam. A track error (angular jitter) component is supplied by a separate fine track sensor. This jitter error is then applied by the adaptive optics processor to a fast steering mirror, which corrects jitter in the tracker image and applies a compensating distortion to the LOS of the HEL beam.
Owner:RAYTHEON CO

System and method for effecting high-power beam control with adaptive optics in low power beam path

A beam control system and method which utilizes the wavefront reversal property of nonlinear optical phase conjugation to permit incorporation of a liquid crystal OPA within the low power legs of the beam control system, thereby affording the advantages of the OPA without the power limitations thereof. The invention is adapted for use with a beacon for illuminating a target with a first beam of electromagnetic energy. The system includes a telescope (1010) for receiving a target return comprising a reflection of the first beam from the target. An optical phased array (1050) is included for correcting for aberrations in the wavefront of the target return. A mechanism is included for ascertaining the correction applied by the optical phased array to the target return. The mechanism applies the correction to a third beam which ultimately is the output beam. In the illustrative embodiment, the first beam of electromagnetic energy is optical energy and the mechanism includes a first phase conjugate mirror (1091) adapted to conjugate electromagnetic energy output by the third mechanism and a second phase conjugate mirror (1092) adapted to conjugate the output of the first phase conjugate mirror. The fourth mechanism further includes an amplifier (1088) for boosting the signal output by the second phase conjugate mirror (1092) to provide the output beam.
Owner:RAYTHEON CO

Stereoscopic display device and display method

It is made possible to satisfy such a condition that moire or color moire is suppressed and a fast image processing is made easy and such a condition that sufficient image quality can be obtained both at a flat image display time and at a stereoscopic image display time simultaneously. A vertical period of pixel rows having the pixels arranged in one row in a lateral direction is three times a lateral period of the pixels, the pixels developing red, green and blue are alternately arranged in a lateral direction in the same row, the pixels in one row of two rows adjacent in a vertical direction are arranged such that lateral positions thereof are shifted to the pixels in the other row by ½ of the lateral period of the pixels, the pixels in rows adjacent in the same column through one row interposed therebetween are the pixels developing different colors of red, green and blue, and a pitch of the elemental images is equal to a width of 18n (n=1, 2, 3 . . . ) pieces of the pixels, and a lateral pitch of the beam control element is smaller than the width of the 18n pieces of the pixels.
Owner:KK TOSHIBA

System and method for effecting high-power beam control with adaptive optics in low power beam path

A beam control system and method which utilizes the wavefront reversal property of nonlinear optical phase conjugation to permit incorporation of a liquid crystal OPA within the low power legs of the beam control system, thereby affording the advantages of the OPA without the power limitations thereof. The invention is adapted for use with a beacon for illuminating a target with a first beam of electromagnetic energy. The system includes a telescope (1010) for receiving a target return comprising a reflection of the first beam from the target. An optical phased array (1050) is included for correcting for aberrations in the wavefront of the target return. A mechanism is included for ascertaining the correction applied by the optical phased array to the target return. The mechanism applies the correction to a third beam which ultimately is the output beam. In the illustrative embodiment, the first beam of electromagnetic energy is optical energy and the mechanism includes a first phase conjugate mirror (1091) adapted to conjugate electromagnetic energy output by the third mechanism and a second phase conjugate mirror (1092) adapted to conjugate the output of the first phase conjugate mirror. The fourth mechanism further includes an amplifier (1088) for boosting the signal output by the second phase conjugate mirror (1092) to provide the output beam.
Owner:RAYTHEON CO

Waveguide architecture, waveguide devices for laser processing and beam control, and laser processing applications

Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100 W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.
Owner:GSI LUMONICS LTD

High-power seeker tile type active phased array antenna

The invention discloses a high-power seeker tile type active phased array antenna, and aims at providing an active phased array antenna which is small in size and low in weight and can reliably work with no requirement for temperature compensation. The high-power seeker tile type active phased array antenna is realized by the following scheme that E-type patches act as radiation array elements of a microstrip antenna array which can be extended according to integral multiples of 4x4 array scale, rectangular grid arrays are distributed on an antenna dielectric substrate, and a tile type TR component is closely connected with a heat exchanger integrally; and the microstrip antenna array is connected with the high-power transmit-receive chips of the tile type TR component to form transmit-receive channels through integration, every four high-power transmit-receive chips are connected with one TR multifunctional chip simultaneously, four TR multifunctional chips form one 4x4 subarray circuit module together, and then subsequent connection with a power distribution synthesis network is performed. Power supply, high-power pulse power modulation and amplitude-phase code control of a DC power supply and wave beam control signals are realized via a power supply modulation distributor so that directional diagram scanning of the high-power tile type active phased array antenna can be realized.
Owner:10TH RES INST OF CETC

Low cost multiple pattern antenna for use with multiple receiver systems

An antenna assembly includes at least two active or main radiating omni-directional antenna elements arranged with at least one beam control or passive antenna element used as a reflector. The beam control antenna element(s) may have multiple reactance elements that can electrically terminate it to adjust the input or output beam pattern(s) produced by the combination of the active antenna elements and the beam control antenna element(s). More specifically, the beam control antenna element(s) may be coupled to different terminating reactances to change beam characteristics, such as the directivity and angular beamwidth. Processing may be employed to select which terminating reactance to use. Consequently, the radiator pattern of the antenna can be more easily directed towards a specific target receiver / transmitter, reduce signal-to-noise interference levels, and / or increase gain by using Radio Frequency (RF), Intermediate Frequency (IF), or baseband processing. A Multiple-Input, Multiple-Output (MIMO) processing technique may be employed to operate the antenna assembly with simultaneous beam patterns.
Owner:IPR LICENSING INC

Multifrequency phased array ultrasonic Doppler flow detection system and method

The invention discloses a multifrequency phased array ultrasonic Doppler flow detection system and a multifrequency phased array ultrasonic Doppler flow detection method. The system comprises a central control processor, a frequency synthesizer, a transmitting part, a receiving part and a display, wherein the transmitting part comprises a transmitter, a power distribution network, a beam control network, a first beam subarray and a second beam subarray; the receiving part comprises a first beam receiver, a second beam receiver, a multi-beam forming network and a signal processor. The system is characterized in that the central control processor is respectively connected with the frequency synthesizer, the transmitter, the power distribution network, the beam control network, the first beam receiver, the second beam receiver, the multi-beam forming network and the signal processor. In the detection method of the system, beam deflection and dynamic focusing are realized through the phased array technology, multi-directional and multi-depth positions can be measured on the cross section of an integral pipeline, and by a mode of adjusting beam scanning dynamically, the processing timeof the beam scanning is reduced, and the measuring accuracy is improved.
Owner:SOUTH CHINA UNIV OF TECH

Beam director and control system for a high energy laser within a conformal window

A beam control system and method. The system includes an illuminator for providing a first beam of electromagnetic energy at a first wavelength; a source for providing a second beam of electromagnetic energy at a second wavelength; and an arrangement for compensating wavefront errors in the second beam using a bias representative of a comparison between the first wavelength and the second wavelength. In the illustrative embodiment, the arrangement includes a processor which corrects wavefront errors using a bias representative of a difference between said first wavelength and said second wavelength. In the disclosed application, a target wavefront sensor is included and the laser is a high-energy laser beam. The wavefront errors include a chromatic aberration and the errors are compensated using a deformable mirror and a correction algorithm executed by an adaptive optics processor. In one alternative embodiment, the errors are compensated using an optical aberration corrector. The aberration corrector may be a holographic optical element or other suitable device. In another alternative embodiment, the errors are corrected with the above embodiment in combination with the use of “woofer” and “tweeter” correcting elements with the woofer being a long stroke low frequency element and the tweeter being a short stroke high frequency element.
Owner:RAYTHEON CO

Low profile active electronically scanned antenna (AESA) for ka-band radar systems

A vertically integrated Ka-band active electronically scanned antenna including, among other things, a transitioning RF waveguide relocator panel located behind a radiator faceplate and an array of beam control tiles respectively coupled to one of a plurality of transceiver modules via an RF manifold. Each of the beam control tiles includes a respective plurality of high power transmit / receive (T / R) cells as well as dielectric waveguides, RF stripline and coaxial transmission line elements. The waveguide relocator panel is preferably fabricated by a diffusion bonded copper laminate stack up with dielectric filling. The beam control tiles are preferably fabricated by the use of multiple layers of low temperature co-fired ceramic (LTCC) material laminated together. The waveguide relocator panel and the beam control tiles are designed to route RF signals to and from a respective transceiver module of four transceiver modules and a quadrature array of antenna radiators matched to free space formed in the faceplate. Planar type metal spring gaskets are provided between the interfacing layers so as to provide and ensure interconnection between mutually facing waveguide ports and to prevent RF leakage from around the perimeter of the waveguide ports. Cooling of the various components is achieved by a pair of planar forced air heat sink members which are located on either side of the array of beam control tiles. DC power and control of the T / R cells is provided by a printed circuit wiring board assembly located adjacent to the array of beam controlled tiles with solderless DC connections being provided by an arrangement of “fuzz button” electrical connector elements.
Owner:NORTHROP GRUMMAN SYST CORP

Beam steering element and associated methods for manifold fiberoptic switches and monitoring

An optical system comprising two or more optical switches co-packaged together comprising discrete sets of input fiber ports (N per set) and an output fiber port (1 per set), and wherein λn from said set of multiple input fiber ports (N) is focused on λn mirror via the use of shared free space optics, wherein at least a first array of MEMS mirrors is utilized to select and switch selected wavelengths from the first set of input fiber ports (N) to an output fiber port of the same set, and wherein at least a second array of MEMS mirrors using and sharing the same free space optics is utilized to select individual wavelengths or spectral components from its input fiber ports to send to its output fiber port for optical power or other monitoring purposes, thus, enabling an N×1, or alternatively a 1×N switch capable of internal feedback monitoring.
Owner:LUMENTUM OPERATIONS LLC

Positioning information assisted beam control method based on intelligent reflecting surface

ActiveCN111245494AEfficient parameter configurationBeam Steering PreciseSpatial transmit diversityPassive radio relay systemsChannel state informationBeam direction
The invention discloses a positioning information assisted beam control method based on an intelligent reflecting surface. The intelligent reflecting surface can calculate and adjust the parameters ofthe intelligent reflecting surface according to the beam direction information transmitted by a base station, and enables a beam to point to a serving user terminal; the intelligent reflecting surface can perform parameter configuration efficiently, and achieves the precise beam control; in addition, a base station does not need to know complete channel state information, the base station realizes accurate positioning of the user terminal according to the results of corresponding angle estimation and flight time estimation; under the assistance of positioning information, the accurate controlof beams can be realized, the overhead of beam control can be effectively reduced, and the energy utilization rate of the system is improved. The positioning information assisted wave beam control method based on the intelligent reflecting surface is wide in application range, and is suitable for millimeter wave communication, terahertz communication and free space optical communication.
Owner:SOUTHEAST UNIV

Wireless communication system and wireless station

A station determines the presence / absence of directional beam control in an access point, on the basis of received power measured when data transmitted from the access point are received, and the type of the received data. In accordance with the result of this determination, the station controls transmitting power to transmit data to the access point.
Owner:KK TOSHIBA

Periodic amplitude control-based phased-array antenna system and wave beam control method

The invention discloses a periodic amplitude control-based phased-array antenna system. The periodic amplitude control-based phased-array antenna system comprises a plurality of phased-array antenna unit passages, a combiner, a power divider, a frequency converter unit and a medium frequency band pass filter unit, wherein each phased-array antenna unit passage comprises an antenna, a first radio frequency band pass filter, a duplexer, a variable gain amplifier unit, a second radio frequency band pass filter and an amplifier control unit; and the amplifier control unit periodically controls the gain of the variable gain amplifier unit. The invention also discloses a wave beam control method of the periodic amplitude control-based phased-array antenna system. By periodically controlling the amplitude of a transmitted / received radio frequency signal, combined control over the amplitude and the phase of the phased-array antenna system is realized, and directional diagram synthesis and adaptive wave beam formation of a phased-array antenna array can be realized without using a phase shift device; and the periodic amplitude control-based phased-array antenna system can be widely applied to systems requiring flexible wave beam control such as phased-array radar and electronic countermeasure.
Owner:SHANGHAI JIAO TONG UNIV

System and method for effecting high-power beam control with outgoing wavefront correction utilizing holographic sampling at primary mirror, phase conjugation, and adaptive optics in low power beam path

A beam control system and method. In an illustrative embodiment, the inventive system (500) provides a first beam of electromagnetic energy (503); samples the first beam (503) and provides a second beam (505) in response thereto; detects aberrations in the second beam (505); and corrects aberrations in the first beam (503) in response to the detected aberrations. In a specific implementation, the invention (500) includes a beam director telescope (510) having a primary mirror (516) on which a holographic optical element (518) is disposed. The holographic optical element (518) samples the output high-power beam and provides a sampled beam to a wavefront sensor (520). The wavefront sensor (520) provides signals to an adaptive optics processor (580). The adaptive optics processor (580) analyzes the sampled wavefront, detects aberrations therein and provides a correction signal to an optical phased array (550).
Owner:RAYTHEON CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products