Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1925 results about "Forced-air" patented technology

A forced-air central heating system is one which uses air as its heat transfer medium. These systems rely on ductwork, vents, and plenums as means of air distribution, separate from the actual heating and air conditioning systems. The return plenum carries the air from several large return grills (vents) to a central air handler for re-heating. The supply plenum directs air from the central unit to the rooms which the system is designed to heat. Regardless of type, all air handlers consist of an air filter, blower, heat exchanger/element/coil, and various controls. Like any other kind of central heating system, thermostats are used to control forced air heating systems.

Comfort product

An improved comfort product that uses an airflow through a heat exchanger and into the comfort product to selectively heat or cool an occupant has a support layer contacting and supporting a channel layer. The channel layer has at least one channel with an opening to accept air. The channel layer contacts and supports an engineered distribution layer that has numerous small holes making it air permeable. The engineered distribution layer contacts and supports an air permeable comfort layer that is of such size and shape to support an occupant of the comfort product. The comfort product also has a heat exchanger assembly for supplying heated or cooled air to the opening in the channel. The heat exchanger assembly includes an air intake having an intake fan, an exhaust outlet and a heat exchanger for selectively heating or cooling air flowing through the heat exchanger resulting in selectively heated or cooled supply air and exhaust air. The intake fan forces air through the heat exchanger where some of the air is selectively heated or cooled to be supplied to the comfort product and some air is used as exhaust air (to remove the unwanted heat if the supplied air is cooled or to warm the exhaust side of the heat exchanger if the supply air is warmed.). The selectively heated or cooled supply air then moves through the channels in the channel layer and the exhaust air exits through the exhaust vent. The selectively heated or cooled supply air then moves through the engineered distribution layer where the numerous small holes diffuse the air and then the selectively heated or cooled air then moves through the comfort layer where the air is further diffused and where the selectively heated or cooled air can selectively heat or cool an occupant of the comfort product.
Owner:RIVERPARK INC A IN THE STATE OF INDIANA

Gaseous fuel burner

An ejector, such as a venturi, facilitates the delivery of gaseous fuel to the combustion chamber of a burner. A blower forces air through the ejector, and the air flow produces a suction that draws fuel from a fuel inlet to produce a fuel-air mixture. The amount of fuel drawn from the fuel inlet is a function of the air flow such that a substantially constant fuel-air ratio is obtained over a range of air flow rates and temperatures without the need for a separate high-pressure fuel pump. The fuel-air mixture may be provided to a combustion chamber for combustion. Air from the blower may be pre-heated prior to entering the ejector, for example, using a heat exchanger that recovers some of the heat from the combusted fuel-air mixture. Air flow through the ejector may be conditioned, for example, by a swirler, to produce a tangential air flow that can increase fuel flow by increasing air velocity across the fuel inlet and / or produce a swirl-stabilized flame in the combustion chamber. The combusted fuel-air mixture may be provided to a thermal load, such as an external combustion engine. Blower speed may be controlled manually or automatically to control power output. Fuel flow to the ejector can be controlled manually or automatically to control fuel-air ratio. The burner can be configured to operate with multiple fuel types, for example, using a fuel selector with fixed or variable restrictors.
Owner:NEW POWER CONCEPTS

Portable combustion device utilizing thermoelectrical generation

This invention provides a portable combustion device that provides a cleaner combustion, reduces the kindling period, and provides a more efficient overall combustion through the use of a fan that directs a predetermined volume of airflow over the combustible fuel—typically wood or similar cellulose-based biological solids. The combustion device has a combustion chamber into which the fuel source is placed for combustion. Mounted to the side of the combustion chamber is a housing that encloses the TEG, which generates an electrical output based on a difference in temperature on opposing sides. Mounted onto the TEG housing and protruding into the combustion chamber through a small passageway is a heat-conducting probe and heat-conducting probe base unit. The opposing side of the TEG is also in contact with a heat sink to remove heat from the TEG device through interaction with ambient air that passes over the vanes from a port located along the side of the TEG housing. A motor and fan near the heat sink to draw air away the heat sink and aid in the cooling of the heat sink, and force air onto the combusting fuel through a plurality of peripheral ports that connect with an air space located between the inner and outer walls of the combustion chamber.
Owner:BIOLITE INC

Gaseous fuel burner

An ejector, such as a venturi, facilitates the delivery of gaseous fuel to the combustion chamber of a burner. A blower forces air through the ejector, and the air flow produces a suction that draws fuel from a fuel inlet to produce a fuel-air mixture. The amount of fuel drawn from the fuel inlet is a function of the air flow such that a substantially constant fuel-air ratio is obtained over a range of air flow rates and temperatures without the need for a separate high-pressure fuel pump. The fuel-air mixture may be provided to a combustion chamber for combustion. Air from the blower may be pre-heated prior to entering the ejector, for example, using a heat exchanger that recovers some of the heat from the combusted fuel-air mixture. Air flow through the ejector may be conditioned, for example, by a swirler, to produce a tangential air flow that can increase fuel flow by increasing air velocity across the fuel inlet and/or produce a swirl-stabilized flame in the combustion chamber. The combusted fuel-air mixture may be provided to a thermal load, such as an external combustion engine. Blower speed may be controlled manually or automatically to control power output. Fuel flow to the ejector can be controlled manually or automatically to control fuel-air ratio. The burner can be configured to operate with multiple fuel types, for example, using a fuel selector with fixed or variable restrictors.
Owner:NEW POWER CONCEPTS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products