Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2564 results about "Intercooler" patented technology

An intercooler is a mechanical device used to cool a gas after compression process. Compression process increases the internal energy of the gas which in turn raises its temperature and reduces the density. In other words intercooler is a device used in compression process, typically a heat exchanger that removes waste heat in a gas compressor. They are used in many applications, including air compressors, air conditioners, refrigeration, and gas turbines, and automotive engines. Here they are widely known as an air-to-air or air-to-liquid cooler for forced induction (turbocharged or supercharged) internal combustion engines to improve their volumetric efficiency, which they do by increasing intake air density through nearly constant pressure cooling. First introduced in 1977 on the Porsche 911, although these were the first cars to use intercoolers they were not the first cars to use turbochargers; in fact they weren’t even the first 911’s to use turbochargers.

Two-stage expansion jet type waste heat recovery system of internal combustion engine

The invention discloses a two-stage expansion jet type waste heat recovery system of an internal combustion engine. According to the scheme, an ORC main circulating system is formed by sequentially connecting a condenser, a lower-pressure working medium pump, a high-pressure working medium pump, a high-temperature preheater, a high-temperature intercooler, a high-temperature flue gas heat exchanger, a first expansion machine, a jet pipe and a second expansion machine in series. A low-temperature intercooler, a low-temperature evaporator and a low-temperature flue gas heat exchanger are sequentially connected between the high-pressure working medium pump and the jet pipe and between the low-pressure working medium pump and the jet pipe, so that the ORC main circulating system is divided into a high-temperature stage branch and a low-temperature stage branch. Cooling water of a cylinder sleeve of the internal combustion engine is connected to the water side of the high-temperature preheater and the water side of the low-temperature evaporator and then returns to the cylinder sleeve. Intake air of the internal combustion engine enters the internal combustion engine by sequentially passing the air side of a gas compressor in a turbocharger, the air side of the high-temperature intercooler and the air side of the low-temperature intercooler. Exhaust gas of the internal combustion engine is connected to a turbine of the turbocharger, the high-temperature flue gas heat exchanger and a reheater in sequence. Waste heat of each part of the internal combustion engine waste heat recovery system can be utilized according to the quality ladder of the waste heat so that efficiency of the internal combustion engine waste heat recovery system can be improved obviously.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products