Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

5169results about "Evaporators/condensers" patented technology

Interactive control system for an HVAC system

An interactive system for controlling the operation of an HVAC system is provide that comprises a thermostat for initiating the operation of the HVAC system in either a full capacity mode of operation or at least one reduced capacity mode of operation, and a controller for an outside condenser unit having a condenser fan motor and a compressor motor, the controller being capable of operating the compressor in a full capacity mode and at least one reduced capacity mode. The system also comprises a controller for an indoor blower unit having a blower fan motor, the controller being capable of operating the blower fan motor in a full capacity mode an at least one reduced capacity mode. The system further includes a communication means for transmitting information between the outside condenser unit controller and at least the indoor blower controller, where the information relates to the operation of the indoor blower and the outdoor condenser unit. The indoor blower controller responsively controls the operation of the blower fan motor in a full capacity mode or a reduced capacity mode based on the information received from the outdoor unit controller, and the outdoor unit controller responsively controls the operation of the compressor in a full capacity mode or a reduced capacity mode based on the information received from the indoor blower controller.
Owner:COPELAND COMFORT CONTROL LP

Method and apparatus for monitoring refrigerant-cycle systems

A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, and a condenser air flow sensor, an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.
Owner:COPELAND LP

Condensing heat-exchange copper tube for an flooded type electrical refrigeration unit

The present invention discloses a condensing heat-exchange copper tube for a flooded type electrical refrigeration unit, which comprises a smooth surface portion, a finned portion provided with plurality of fins and a transitional portion connecting the smooth surface portion to the finned portion. Said fin includes a fin base close to the outer surface of the heat-exchange tube and a fin top away from the outer surface. Said fin is further provided with a secondary fin at the central portion of the fin and a third fin at the top portion of the fin, wherein a certain distance is provided between two axially adjacent secondary fins or two axially adjacent third fins. Secondary fins as well as third fins according to the invention further increase the heat transfer area for the heat-exchange tube. Meanwhile, secondary fins and third fins help to attenuate the condensate film such that the condensate film is substantially eliminated, and vapor condensation and heat transfer may be carried out in a better way. At the same time, secondary fins and third fins help to guide the condensate film away from the surface of the heat-exchange tube such that heat resistance may be reduced. Thus, the overall efficiency of heat transfer through condensation is enhanced, and the property of the condenser is improved.
Owner:GOLDEN DRAGON PRECISE COPPER TUBE GROUP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products