Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1119 results about "Vapor pressure" patented technology

Vapor pressure (or vapour pressure in British English; see spelling differences) or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's evaporation rate. It relates to the tendency of particles to escape from the liquid (or a solid). A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the kinetic energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, thereby increasing the vapor pressure.

EUV collector debris management

A method and apparatus that may comprise an EUV light producing mechanism utilizing an EUV plasma source material comprising a material that will form an etching compound, which plasma source material produces EUV light in a band around a selected center wavelength comprising: an EUV plasma generation chamber; an EUV light collector contained within the chamber having a reflective surface containing at least one layer comprising a material that does not form an etching compound and/or forms a compound layer that does not significantly reduce the reflectivity of the reflective surface in the band; an etchant source gas contained within the chamber comprising an etchant source material with which the plasma source material forms an etching compound, which etching compound has a vapor pressure that will allow etching of the etching compound from the reflective surface. The etchant source material may comprises a halogen or halogen compound. The etchant source material may be selected based upon the etching being stimulated in the presence of photons of EUV light and/or DUV light and/or any excited energetic photons with sufficient energy to stimulate the etching of the plasma source material. The apparatus may further comprise an etching stimulation plasma generator providing an etching stimulation plasma in the working vicinity of the reflective surface; and the etchant source material may be selected based upon the etching being stimulated by an etching stimulation plasma. There may also be an ion accelerator accelerating ions toward the reflective surface. The ions may comprise etchant source material. The apparatus and method may comprise a part of an EUV production subsystem with an optical element to be etched of plasma source material.

Method and means for capture and long-term sequestration of carbon dioxide

InactiveUS20090081096A1High heat of reactionHigh regeneration energyCombination devicesGas treatmentSolubilityAmbient pressure
The invention teaches a practical method of recovering CO2 from a mixture of gases, and sequestering the captured CO2 from the atmosphere for geologic time as calcium carbonate and provides a CO2 scrubber for carbon capture and sequestration. CO2 from the production of calcium oxide is geologically sequestered. A calcium hydroxide solution is produced from the environmentally responsibly-produced calcium oxide. The CO2 scrubber incorporates an aqueous froth to maximize liquid-to-gas surface area and time-of-contact between gaseous CO2 and the calcium hydroxide solution. The CO2 scrubber decreases the temperature of the liquid and the mixed gases, increases ambient pressure on the bubbles and vapor pressure inside the bubbles, diffuses the gas through intercellular walls from relative smaller bubbles with relative high vapor pressure into relative larger bubbles with relative low vapor pressure, and decreases the mean-free-paths of the CO2 molecules inside the bubbles, in order to increase solubility of CO2 and the rate of dissolution of gaseous CO2 from a mixture of gases into the calcium hydroxide solution.
The CO2 scrubber recovers gaseous CO2 directly from the atmosphere, from post-combustion flue gas, or from industrial processes that release CO2 as a result of process. CO2 reacts with calcium ions and hydroxide ions in solution forming insoluble calcium carbonate precipitates. The calcium carbonate precipitates are separated from solution, and sold to recover at least a portion of the cost of CCS.

Pipette dispensing block

A pipette dispensing block has an improved piston seal and lift plate engagement/disengagement means. In a pipette dispensing block where a piston is used to create a pressure differential to aspirate or extract and dispense or eject fluid material, the maintenance of a vacuum or increased pressure is enhanced by a pair of O-ring seals engaging the piston. A reservoir separates the O-rings and is filled with a low vapor pressure lubricant such as silicone oil or grease. The lubricant is maintained in the reservoir by the O-rings and serves to enhance the vacuum seal while maintaining the O-rings in a pliable and resilient manner. The heads of the pistons are engraved or grooved to leave a circular central pillar surrounded above and below by the piston head and a lower intermediate piston pillar section. The individual pistons are arranged in straight rows so that a slat may slip through opposite pairs of opposing piston pillars thereby entrapping the pistons and preventing them from sliding past the lift plate as the lift plate is lifted upwardly. Shoulders present on the pistons below the lift plate serve to allow the lift plate to push the pistons into the cylindrical chambers of the head block so that a pipette dispenser is provided. The lift plate or portions thereof are then trapped between the slats and the piston shoulders, coupling the pistons to the lift plate. Upward and downward control is thereby established and maintained by the lift plate on the pistons.

Low vacuum and vacuum release device for electric rice cooker

The present invention relates to a low vacuum and vacuum release device for an electric rice cooker, the device being capable of releasing a vacuum and maintaining a vacuum state by the rotation of an operation lever. The electric rice cooker has: the operation lever provided at the upper part of a lid; and the low vacuum and vacuum release device provided inside the lid, elastically connected to the operation lever such that when the operation lever is rotated, the device rises so as to open an air inlet, thereby releasing the vacuum while external air flows therein, and when the operation lever is released, the device lowers by the elastic force of a spring so as to maintain the vacuum state by blocking the air inlet, wherein the low vacuum and vacuum release device comprises: a housing provided in the inside of the lid; a first pressure opening/closing operation part provided inside the housing and rising or lowering according to the vapor pressure during cooking, thereby opening or closing the first vapor outlet of a first lower sealing member; a second vacuum release operation part provided inside the housing and rising or lowering according to the rotation of the operation lever, thereby opening or closing the air inlet of a second lower sealing member; and a raising/lowering operation connection part provided at the upper part of the housing and raising or lowering the second vacuum release operation part while being mounted with the operation lever.

Alternative fuel and fuel additive compositions

Alternative gasoline, diesel fuel, marine diesel fuel, jet fuel, and flexible fuel compositions are disclosed. The compositions include an alcohol and/or a glycerol ether or mixture of glycerol ethers, which can be derived from renewable resources. When combined with gasoline/ethanol blends, the glycerol ethers can reduce the vapor pressure of the ethanol and increasing the fuel economy. When added to diesel fuel/alcohol blends, glycerol ethers improve the cetane value of the blends. All or part of the diesel fuel in the compositions described herein can be biodiesel fuel and/or synthetic fuel derived from a Fischer-Tropsch synthesis process. Fischer-Tropsch synthesis can also use feedstocks derived from sources other than crude oil, such as methane, methanol, ethanol, lignin and glycerol, which can further reduce reliance on foreign sources of crude oil. When used in jet fuel, glycerol ethers can replace all or part of conventional deicing additives, thus lowering skin toxicity, and glycerol ethers ability to reduce particulate emissions can lower the appearance of contrails. When used in marine diesel, the reduction in particulate emissions can be environmentally significant. In another embodiment, the alternative compositions comprise gasoline, ethanol, and n-butanol, and in one aspect, the ethanol and/or n-butanol can be derived from renewable resources. Fuel additive compositions, including glycerol ethers and hydrocarbons and/or alcohols, are also disclosed.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products