Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

12010results about How to "Promote recovery" patented technology

Hydrocarbon gas processing

A process for the recovery of ethane, ethylene, propane, propylene and heavier hydrocarbon components from a hydrocarbon gas stream is disclosed. In recent years, the preferred method of separating a hydrocarbon gas stream generally includes supplying at least portions of the gas stream to a fractionation tower having at least one reboiler, and often one or more side reboilers, to supply heat to the column by withdrawing and heating some of the tower liquids to produce stripping vapors that separate the more volatile components from the desired components. The reboiler and side reboilers (if any) are typically integrated into the feed stream cooling scheme to provide at least a portion of the refrigeration needed to condense the desired components for subsequent fractionation in the distillation column. In the process disclosed, the tower reboiling scheme is modified to use one or more tower liquid distillation streams from a point higher in the column than is used in the conventional reboiling scheme, providing colder stream(s) for the reboiler(s) that allow more effective cooling of the feed streams and thereby improve the efficiency with which the desired components are recovered. In addition, the tower liquid streams withdrawn from a higher point in the column contain larger quantities of the more volatile components, which when vaporized provide better stripping of undesirable components like carbon dioxide without reducing the recovery of the desired components. The heated distillation stream is returned to a lower point on the fractionation tower that is separated from the withdrawal point by at least one theoretical stage.

Method and apparatus for a rearrangeably non-blocking switching matrix

A switching apparatus is disclosed that employs a relatively simple and inexpensive switching matrix, but which avoids interruption of existing connections when connections are added or removed. The switching matrix switches errorlessly by controlling the point in time at which switching occurs. Using such a technique, switching can be performed without disturbing the connections already configured in the switching matrix, and so is referred to herein as being non-blocking. Optionally, the incoming data can be rearranged to provide a larger window of time in which the switching matrix can be switched. In the case of a switch using an optical backplane, this also allows more time for various components of the system (e.g., clock/data recovery units) to re-acquire lock. The switching apparatus includes a switching matrix and control circuitry. The switching matrix has a matrix input, a control input and a number of matrix outputs, and is configured to receive an information stream at the matrix input. The information stream includes a number of portions, while the control circuitry has a control output coupled to the control input. The control circuitry is configured to initially configure the switching matrix to output the information stream at a one of the matrix outputs and to subsequently configure the switching matrix to output the information stream at another of the matrix outputs during a period of time during which the one of the portions is transiting the switching matrix.

Reconfigurable service provision via a communication network

InactiveUS6330586B1Customer base for information services is particularly wideLarge capacityMultiplex system selection arrangementsData processing applicationsReconfigurabilityReusable software
A services provision system provides information services over one or more communications networks and has a software infrastructure divided into domains. Each domain has an intelligent software agent and this community of agents sits in a computing environment represented in each domain by a DPE kernel. The community of agents co-operates to provide service and service management functionality to a user. At least one of the agents is reconfigurable to change the functionality the system makes available. Reconfigurability is based on the use of a plurality of reusable software modules, the agent reconfiguring by selecting a new combination of modules. The software modules themselves incorporate rules, or policies, which determine process steps offered by the modules at run-time. These policies are external to the modules and may be loaded at run-time, allowing dynamic modification to functionality of the system. The system as a whole offers functionality associated with using services, providing them and managing them and the reconfigurability allows it to offer the different types of functionality in an efficient way. It also allows access control to functionality at different levels with particularly good security against fraudulent use.

Bone shaping instrument and method for using the same

A bone resection tool for resecting an end of a bone along a surface having a curvature comprises a guide, a cutting tool and a track follower. The guide is configured to be removably attached in a fixed position to the end of the bone. The guide is configured to include a track exhibiting a curvature generally corresponding to the curvature of the surface to be resected in the bone. The cutting tool includes a cutting face. The track follower is configured to couple to the cutting tool and cooperate with the track to facilitate reciprocation of the cutting tool relative to the guide to induce the cutting face to resect the bone along the surface having the curvature. A method for cutting a bone along a curved surface conforming to the curvature of a curved surface of the underside of a prosthetic component comprises the steps of incising the tissue surrounding the surface of the bone, positioning a guide alongside the surface of a bone to be cut, affixing the guide to the bone, interconnecting a cutter having a cutting face with the guide, maintaining the cutting face generally parallel to the tangent of the curved surface and traversing the cutting face along the bone while guiding the cutter along the track. The tissue incision incises the tissue surrounding the surface of the bone to be cut in a minimally invasive fashion. The positioned guide includes a track configured to assimilate the curvature of the curved surface of the underside of the prosthetic component.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products