Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8805results about How to "Efficient production" patented technology

Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier

An apparatus generates femtosecond pulses from laser amplifiers by nonlinear frequency conversion. The implementation of nonlinear frequency-conversion allows the design of highly nonlinear amplifiers at a signal wavelength (SW), while still preserving a high-quality pulse at an approximately frequency-doubled wavelength (FDW). Nonlinear frequency-conversion also allows for limited wavelength tuning of the FDW. As an example, the output from a nonlinear fiber amplifier is frequency-converted. By controlling the polarization state in the nonlinear fiber amplifier and by operating in the soliton-supporting dispersion regime of the host glass, an efficient nonlinear pulse compression for the SW is obtained. The generated pulse width is optimized by utilizing soliton compression in the presence of the Raman-self-frequency shift in the nonlinear fiber amplifier at the SW. High-power pulses are obtained by employing fiber amplifiers with large core-diameters. The efficiency of the nonlinear fiber amplifier is optimized by using a double clad fiber (i.e., a fiber with a double-step refractive index profile) and by pumping light directly into the inner core of this fiber. Periodically poled LiNbO3 (PPLN) is used for efficient conversion of the SW to a FDW. The quality of the pulses at the FDW can further be improved by nonlinear frequency conversion of the compressed and Raman-shifted signal pulses at the SW. The use of Raman-shifting further increases the tuning range at the FDW. For applications in confocal microscopy, a special linear fiber amplifier is used.

System and method for dynamic assistance in software applications using behavior and host application models

A Cooperative Help Assistance (CHA) system and method provide real-time user assistance for one or more windows-based Graphic User Interface (GUI) applications or a single application's different subsections such as web pages, running concurrently in any operating system. The CHA System enables the development of an informative assistance object independently from the original source code or development environment of the target Host Application. The assistance object can be selected by any number of user interfaces from sophisticated inference driven interactive interface search tools or categorized lists. By intercepting and monitoring user actions on a Host Application, the CHA system performs intelligent assistance in the context of the target host application program. Utilizing a Host Application Model, the CHA System and method dynamically assemble many elements in real-time or just-in-time to produce assistance sequences or elements very efficiently without having to code every interface path permutation. Paths can be dynamically generated from the Host Application Model, which enables a real-time module to offer intelligent, contextual assistance as well as real-time construction of automated, accelerated CHA Sequences or Procedures that require little or no user interaction. All assistance and information are processed and expressed by an extensive multitasking, multimedia subsystem for two dimensional (2D) and real-time three-dimensional (3D) application interfaces, which greatly enhances and extends the effectiveness of any explanation or material expression. The production of Assistant Sequences is facilitated by the Host Application Model and 2D and 3D GUI “drag and drop” interface tools.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products