Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2998results about "Photography auxillary processes" patented technology

Method and apparatus for producting negative and positive oxidative reductive potential (orp) water

ActiveUS20050121334A1Effective and efficient and economicalCellsWater treatment parameter controlParticulatesElectrolysis
A method and apparatus for electrolytically producing oxidation reduction potential water from aqueous salt solutions for use in disinfection, sterilization, decontamination, wound cleansing. The apparatus includes an electrolysis unit having a three-compartment cell (22) comprising a cathode chamber (18), an anode chamber (16), and a saline solution chamber (20) interposed between the anode and cathod chambers. Two communicating (24, 26) membranes separate the three chambers. The center chamber includes a fluid flow inlet (21a) and outlet (21b) and contains insulative material that ensures direct voltage potential does not travel through the chamber. A supply of water flows through the cathode and anode chambers at the respective sides of the saline chamber. Saline solution flows through the center chamber, either by circulating a pre-prepared aqueous solution containing ionic species, or, alternatively, by circulating pure water or an aqueous solution of, e.g., aqueous hydrogen chloride and ammonium hydroxide, over particulate insulative material coated with a solid electrolyte. Electrical current is provided to the communicating membranes separating the chambers, thus causing an electrolytic reaction that produces both oxidative (positive) and reductive (negative) ORP water.
Owner:SONOMA PHARMA INC

Waste lead recovering method for lead-acid storage batteries

The invention discloses a waste lead recovering method for lead-acid storage batteries. The method comprises the following steps: fine stuff such as diachylon and the like are added in a reaction kettle with a stirring device; reducing agent (FeSO4) and dilute sulfuric acid are simultaneously added; stirring reaction is carried out at the temperature of 50-60 DEG C for 50-70 minutes so as to reduce lead dioxide into lead sulfate; the lead sulfate is added into the reaction kettle with the stirring device; water is simultaneously added into the reaction kettle for size mixing; then sodium carbonate is added; desulfuration is carried out at the temperature of 50-60 DEG C so as to obtain solid lead carbonate; the lead carbonate is put into a smelting furnace and then decomposed at the temperature of 320-350 DEG C so as to obtain lead oxide; and reducing agent (carbon) is added into the smelting furnace to reduce the lead oxide into metal lead at the temperature of 700-800 DEG C. The method recovers the lead by means of the combination of the wet and the dry processes, thereby avoiding the harm to the environment caused by lead dust, lead vapor, lead skim, sulfur dioxide gas, and the like by adopting fire smelting. The method has the advantages of high lead recovery rate, low energy consumption and no environment pollution.
Owner:张天任

Method for patterning organic materials or combinations of organic and inorganic materials

The present application refers to a method of patterning organic materials or organic/inorganic materials onto a substrate, comprising the following steps: (1) patterning of a water-soluble material “A” onto a surface of the substrate, thereby forming a substrate/material “A” surface; (2) depositing organic or organic/inorganic material “B” onto the substrate/material “A” surface; (3) lifting-off material “A” in aqueous solution; wherein, step (1) comprises the following steps: (1a) patterning of a photoresist material onto the substrate surface, thereby forming a substrate/photoresist material surface; (1b) depositing the water soluble material “A” onto the substrate/photoresist material surface; (1c) lifting-off the photoresist material in an organic solvent; or, alternatively, step (1) comprises the following steps: (1a′) depositing the water-soluble material “A” onto the substrate surface, thereby forming a substrate/material “A” surface; (1b′) patterning the photoresist material onto the substrate/material “A” surface; (1c′) etching the unmasked material “A” in aqueous solution; (1d′) lifting-off the photoresist material in an organic solvent. The present application also refers to the use of said method, to a pattern of organic materials or organic/inorganic materials prepared by said method, and to a substrate carrying such patterns. The application also refers to the use of a patterned nanoparticle film.
Owner:SONY DEUT GMBH

Preparation method of lithium metal through electrolysis

The invention discloses a preparation method of lithium metal through electrolysis, which comprises the following steps: at normal temperature and normal pressure, applying direct current voltage on an anode current collector and a cathode current collector so that potassium ions in a water phase in an anode chamber penetrate through a diaphragm having lithium ion conductor characteristics under the driving of the voltage, an organic solvent in a cathode chamber is reduced to a metal lithium single substance which is deposited and enriched on the surface of the cathode current collector to obtain the product, wherein the anode chamber of an electrolysis cell is filled with an aqueous solution at least containing the lithium ions, the cathode chamber od the electrolysis cell is filled with the organic solvent having the lithium ion conductor characteristics, the diaphragm for separating the anode chamber from the cathode chamber is a lithium ion conductor ceramic membrane having the lithium ion conductor characteristics or a composite membrane of a lithium ion conductor and a polymer, and the cathode chamber is in inert gas atmosphere. The electrolysis preparation method for lithium metal avoids severe conditions which are required to prepare lithium metal by a traditional high temperature molten electrolysis process, and has the characteristics of low energy consumption, high lithium extraction efficiency and high product purity and is environment-friendly and wide in raw material sources.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products