Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

9910results about "Energy based chemical/physical/physico-chemical processes" patented technology

Nano-scaled graphene plates

A nano-scaled graphene plate material and a process for producing this material. The material comprises a sheet of graphite plane or a multiplicity of sheets of graphite plane. The graphite plane is composed of a two-dimensional hexagonal lattice of carbon atoms and the plate has a length and a width parallel to the graphite plane and a thickness orthogonal to the graphite plane with at least one of the length, width, and thickness values being 100 nanometers or smaller. The process for producing nano-scaled graphene plate material comprises the steps of: a). partially or fully carbonizing a precursor polymer or heat-treating petroleum or coal tar pitch to produce a polymeric carbon containing micron- and / or nanometer-scaled graphite crystallites with each crystallite comprising one sheet or a multiplicity of sheets of graphite plane; b). exfoliating the graphite crystallites in the polymeric carbon; and c). subjecting the polymeric carbon containing exfoliated graphite crystallites to a mechanical attrition treatment to produce the nano-scaled graphene plate material.
Owner:GLOBAL GRAPHENE GRP INC

Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)

The present invention relates to an enhanced sequential atomic layer deposition (ALD) technique suitable for deposition of barrier layers, adhesion layers, seed layers, low dielectric constant (low-k) films, high dielectric constant (high-k) films, and other conductive, semi-conductive, and non-conductive films. This is accomplished by 1) providing a non-thermal or non-pyrolytic means of triggering the deposition reaction; 2) providing a means of depositing a purer film of higher density at lower temperatures; and, 3) providing a faster and more efficient means of modulating the deposition sequence and hence the overall process rate resulting in an improved deposition method. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Owner:NOVELLUS SYSTEMS

Free-standing and aligned carbon nanotubes and synthesis thereof

One or more highly-oriented, multi-walled carbon nanotubes are grown on an outer surface of a substrate initially disposed with a catalyst film or catalyst nano-dot by plasma enhanced hot filament chemical vapor deposition of a carbon source gas and a catalyst gas at temperatures between 300° C. and 3000° C. The carbon nanotubes range from 4 to 500 nm in diameter and 0.1 to 50 μm in length depending on growth conditions. Carbon nanotube density can exceed 104 nanotubes / mm2. Acetylene is used as the carbon source gas, and ammonia is used as the catalyst gas. Plasma intensity, carbon source gas to catalyst gas ratio and their flow rates, catalyst film thickness, and temperature of chemical vapor deposition affect the lengths, diameters, density, and uniformity of the carbon nanotubes. The carbon nanotubes of the present invention are useful in electrochemical applications as well as in electron emission, structural composite, material storage, and microelectrode applications.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Method for etching high dielectric constant materials and for cleaning deposition chambers for high dielectric constant materials

A process for the removal of a substance from a substrate for etching and / or cleaning applications is disclosed herein. In one embodiment, there is provided a process for removing a substance having a dielectric constant greater than silicon dioxide from a substrate by reacting the substance with a reactive agent that comprises at least one member from the group consisting a halogen-containing compound, a boron-containing compound, a hydrogen-containing compound, nitrogen-containing compound, a chelating compound, a carbon-containing compound, a chlorosilane, a hydrochlorosilane, or an organochlorosilane to form a volatile product and removing the volatile product from the substrate to thereby remove the substance from the substrate.
Owner:VERSUM MATERIALS US LLC

Diamond coatings on reactor wall and method of manufacturing thereof

A corrosion resistant component of semiconductor processing equipment such as a plasma chamber includes a diamond containing surface and process for manufacture thereof.
Owner:LAM RES CORP

Method for forming low-carbon CVD film for filling trenches

A method of forming a low-carbon silicon-containing film by CVD on a substrate having trenches includes: introducing a silicon-containing compound having three or less hydrocarbon units in its molecule and having a boiling temperature of 35° C. to 220° C.; applying RF power to the gas; and depositing a film on a substrate having trenches wherein the substrate is controlled at a temperature such that components of the silicon-containing compound are at least partially liquidified on the substrate, thereby filling the trenches with the film.
Owner:ASM JAPAN

Method and apparatus for acoustically controlling liquid solutions in microfluidic devices

Acoustic energy is used to control motion in a fluid. According to one embodiment, the invention directs acoustic energy at selected naturally occurring nucleation features to control motion in the fluid. In another embodiment, the invention provides focussed or unfocussed acoustic energy to selectively placed nucleation features to control fluid motion. According to one embodiment, the invention includes an acoustic source, a controller for controlling operation of the acoustic source, and one or more nucleation features located proximate to or in the fluid to be controlled.
Owner:COVARIS INC

UV Irradiation Apparatus Having UV Lamp-Shared Multiple Process Stations

A UV irradiation apparatus for treating substrates includes: at least two process stations each provided with a UV transmissive window; at least one electric UV lamp using two electrodes in a gas tube extending over the UV transmissive windows of the process stations aligned along the gas tube and shared by the process stations; a UV transmissive zone disposed between the UV lamp and the process stations and provided with reflectors; and shutters for blocking UV light from being transmitted to the respective process stations independently.
Owner:ASM JAPAN

Method for energy-assisted atomic layer deposition and removal

A method for energy-assisted atomic layer deposition and removal of a dielectric film are provided. In one embodiment a substrate is placed into a reaction chamber and a gaseous precursor is introduced into the reaction chamber. Energy is provide by a pulse of electromagnetic radiation which forms radical species of the gaseous precursor. The radical species react with the surface of the substrate to form a radical terminated surface on the substrate. The reaction chamber is purged and a second gaseous precursor is introduced. A second electromagnetic radiation pulse is initiated and forms second radical species. The second radical species of the second gas react with the surface to form a film on the substrate. Alternately, the gaseous species can be chosen to produce radicals that result in the removal of material from the surface of the substrate.
Owner:HELMS JR AUBREY L +3

Electromagnetic susceptors with coatings for artificial dielectric systems and devices

A coated susceptor of electromagnetic energy for chemical processing made of a matrix material that surrounds a non-matrix material that is made from a material that is different from the matrix material, in which the matrix material is constructed of material having lower dielectric losses compared to the non-matrix material, the non-matrix material initially absorbs electromagnetic energy applied to the electromagnetic susceptor to a greater extent than the matrix material, the non-matrix material produces subsequent heat in the matrix material, and the surface of the susceptor is coated with a material that interacts with applied electromagnetic energy of at least one frequency and initially absorbs electromagnetic energy and produces heat.
Owner:DALTON ROBERT C

Process for producing single wall nanotubes using unsupported metal catalysts

A process for producing hollow, single-walled carbon nanotubes by catalytic decomposition of one or more gaseous carbon compounds by first forming a gas phase mixture carbon feed stock gas comprising one or more gaseous carbon compounds, each having one to six carbon atoms and only H, O, N, S or Cl as hetero atoms, optionally admixed with hydrogen, and a gas phase metal containing compound which is unstable under reaction conditions for said decomposition, and which forms a metal containing catalyst which acts as a decomposition catalyst under reaction conditions; and then conducting said decomposition reaction under decomposition reaction conditions, thereby producing said nanotubes.
Owner:HYPERION CATALYSIS INT

Counter flow mixer for process chamber

A counterflow mixing device for a process chamber is disclosed, comprising an injection tube that introduces a fluid in a manner counter to a flow of a post-plasma gas mixture traveling downward from a plasma source. The invention allows for proper mixing of the fluid as well as avoiding recombination of generated ions and radicals.
Owner:ASM IP HLDG BV

Shower plate, and plasma processing apparatus, plasma processing method and electronic device manufacturing method using the shower plate

Provided is a shower plate in which there's no need for a cover plate. The shower plate 105 is disposed in a processing chamber 102 of a plasma processing apparatus, for discharging a plasma excitation gas to generate plasma in the processing chamber 102, and the shower plate 105 includes a horizontal hole 111 for introducing the plasma excitation gas into the shower plate 105 from a gas inlet port 110 of the plasma processing apparatus; and a vertical hole 112 communicating with the horizontal hole 111, wherein the shower plate 105 is formed as a single body.
Owner:TOKYO ELECTRON LTD +1

Entangled single-wall carbon nanotube solid material and methods for making same

Buckyrock is a three-dimensional, solid block material comprising an entangled network of single-wall carbon nanotubes (SWNT), wherein the block comprises greater than 75 wt % SWNT. SWNT buckyrock is mechanically strong, tough and impact resistant. The single-wall carbon nanotubes in buckyrock form are present in a random network of individual single-wall carbon nanotubes, SWNT “ropes” and combinations thereof. The random network of the SWNT or SWNT ropes can be held in place by non-covalent “cross-links” between the nanotubes at nanotube contact points. In one embodiment, SWNT buckyrock is made by forming a SWNT-water slurry, slowly removing water from the slurry which results in a SWNT-water paste, and allowing the paste to dry very slowly, such that the SWNT network of the SWNT-water paste is preserved during solvent evaporation. Buckyrock can be used in applications, such as ballistic protection systems, involving light-weight material with mechanical strength, toughness and impact resistance.
Owner:RICE UNIV

Methods and apparatus for downstream dissociation of gases

A method and apparatus for activating and dissociating gases involves generating an activated gas with a plasma located in a chamber. A downstream gas input is positioned relative to an output of the chamber to enable the activated gas to facilitate dissociation of a downstream gas introduced by the gas input, wherein the dissociated downstream gas does not substantially interact with an interior surface of the chamber.
Owner:MKS INSTR INC

Lithographic apparatus and device manufacturing method

In an immersion lithography apparatus, the immersion liquid is supplied from a tank via a flow restrictor. The liquid held in the tank is maintained at a substantially constant height above the flow restrictor to ensure a constant flow of liquid.
Owner:ASML NETHERLANDS BV

Ozone generator

An ozone generator for generating ozone by applying a specified process to oxygen by discharge includes a first raw material gas supply unit for supplying the oxygen as a first raw material gas, and a second raw material gas supply unit for supplying an oxide compound gas as a second raw material gas, in which, by excited light, excited and generated by a discharge in the oxygen and the oxide compound gas, the oxide compound gas is dissociated, or the oxide compound gas is excited accelerating dissociation of the oxygen, and ozone is generated. In this way, ozone generation efficiency is raised.
Owner:TOSHIBA MITSUBISHI-ELECTRIC IND SYST CORP

Plasma processing apparatus and plasma processing method

A tray 15 for a dry etching apparatus 1 has substrate accommodation holes 19A to 19D penetrating thickness direction and a substrate support portion 21 supporting an outer peripheral edge portion of a lower surface 2a of a substrate 2. A dielectric plate 23 has a tray support surface 28 supporting a lower surface of the tray 15, substrate placement portions 29A through 29D inserted from a lower surface side of the tray 15 into the substrate accommodation holes 19A through 19D and having a substrate placement surface 31 at its upper end surface for placing the substrate 2. A dc voltage applying mechanism 43 applies a dc voltage to an electrostatic attraction electrode 40. A heat conduction gas supply mechanism 45 supplies a heat conduction gas between the substrate 2 and substrate placement surface 31. The substrate 2 can be retained on the substrate placement surface 31 with high degree of adhesion. This results in that the cooling efficiency of the substrate 2 is improved and processing is uniformed at the entire region of the substrate surface including the vicinity of the outer peripheral edge.
Owner:PANASONIC CORP

Nanoparticles of silicon oxide alloys

Nanoparticles of silicon oxide alloys (i.e., oxides of SiMo, SiPt, and SiAl) are produced by laser vaporization of a silicon target and a target of a metal (i.e., Mo, Pt, or Al), in an oxygen containing atmosphere in a diffusion cloud chamber, where the target metal vapors aggregate into novel three-dimensional porous web structures. The structures have a homogeneous composition with a uniform ratio of silicon to the metal.
Owner:VIRGINIA COMMONWEALTH UNIV

Ozone system for multi-chamber tools

An improved system and method for controlling ozone concentration in connection with a multi-chamber tool. The system and method involve a first and a second concentration controller in combination with an ozone generator. The first concentration controller detects an EVENT (i.e., one of the chambers in the multi-chamber tool coming on-line or off-line) and in response provides a power instruction to the ozone generator in accordance with a predictive control algorithm. The first concentration controller has a fast (i.e, about 1 second) response time. The second concentration controller is masked from the ozone generator during the EVENT, but otherwise controls the generator after an interval of time has lapsed after the EVENT. The second concentration controller has a slower response time than the first concentration controller, however the second concentration controller provides the system with long-term stability and can be used to provide updated data to the predictive control algorithm.
Owner:MKS INSTR INC

Device and method for detecting analytes

The invention relates to a method for detecting analytes and to a device for carrying out the method, for use for analysis or diagnosis in the fields of chemistry, biochemistry, molecular genetics, food chemistry, biotechnology, the environment and medicine. Marker particles (5) with different electrical properties or a different relative permeability to those of the measuring solution (3) surrounding them are used to detect the analytes (8). The marker particles (5) either bond specifically to the analytes (8) or to a base (2) in competition with the analyte. The analytes (8) are detected by the changes in an electrical field or an electrical current generated by electrodes (2) or in an electrical voltage applied to an electrode or in a magnetic field, said changes being caused by marker particles which have bonded with the analytes or by marker particles which have instead bonded to the base in an electrical field.
Owner:KNOLL MEINHARD

Method and apparatus for ozone sterilization

The present invention provides a method and apparatus for sterilizing articles using an ozone-containing gas, where condensation of water from the sterilization atmosphere during the sterilization process is substantially prevented. The inventive sterilization method includes providing a sterilization chamber and placing an article into the sterilization chamber. The sterilization chamber is sealed prior to equalizing the temperature of the article and the atmosphere in the sterilization chamber. A vacuum is applied to achieve a preselected vacuum pressure in the sterilization chamber. Once the vacuum pressure is set, water vapour is supplied to the sterilization chamber. Ozone-containing gas is then supplied to the sterilization chamber and the sterilization chamber remains sealed for a preselected treatment period, where the sterilization chamber remains sealed throughout the whole process. Finally, vacuum in the sterilization chamber is released.
Owner:STRYKER CORP

Pulsed plasma processing method and apparatus

In a method for performing a plasma-assisted treatment on a substrate in a reactor chamber by: introducing at least one process gas into the reactor chamber; and creating a plasma within the reactor chamber by establishing an RF electromagnetic field within the chamber and allowing the field to interact with the process gas, the electromagnetic field is controlled to have an energy level which varies cyclically between at least two values each sufficient to maintain the plasma, such that each energy level value is associated with performance of a respectively different treatment process on the substrate.
Owner:TOKYO ELECTRON LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products