Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

11868results about How to "Convenience to work" patented technology

Container inspection apparatus

A relocatable container inspection device, which is constituted by modularized units, is used for inspecting a container. The device comprises: a first cabin unit including a radiation source for generating a beam of penetration radiation for penetrating the container to be inspected; a second cabin unit including detectors for detecting the beam of penetration radiation penetrating through the container being inspected and producing corresponding radiographic signals, the second cabin unit and the first cabin unit being arranged oppositely in both sides of an inspection passage; a gantry unit bridging the first cabin unit and the second cabin unit to form a portal-shaped frame adapted for straddling the container being inspected; means for moving the frame relative to the container being inspected along the inspection passage, so that the detectors receive the beam of the penetration radiation generated from the radiation resource and passing through the container being inspected, thereby continuously scanning the container and producing the corresponding radiographic signals, wherein the first cabin unit, the second cabin unit and the gantry unit are all individually made as modular units so as to be quickly and easily assembled and disassembled with each other on the inspection site. In the present invention, all of the modularized units of the container inspection device can be easily assembled and disassembled in the work field, and the dimensions of each modular unit are sized to be suitable for road transports and to be facilitate for the device's movement.
Owner:TSINGHUA UNIV +1

Remote radio operating system, and remote operating apparatus, mobile relay station and radio mobile working machine

The present invention relates to remote radio control technology, and a remote radio control system includes a radio movable working machine (1), a remote control apparatus (6A), and a movable repeater station (7). First bidirectional communication means (31, 71) having a high radio wave directionality and first automatic tracking means (32, 71A) are provided between the working machine (1) and the repeater station (7), and second bidirectional communication means (63, 76) having a high radio wave directionality, second automatic tracking means (63A, 76A), and emergency spread spectrum bidirectional communication means (64, 87) for enabling bidirectional communication between the remote control apparatus (6A) and the repeater station (7) when communication by the second bidirectional communication means (63, 76) is impossible are provided between the remote control apparatus (6A) and the repeater station (7). Consequently, even if communication between the working machine (1) and the movable repeater station (7) is disabled, each of the working machine (1) and the repeater station (7) is permitted to perform a minimum necessary operation, and any other person than those skilled in actual controlling operation of the working machine (1) can perform remote control easily.
Owner:CATEPILLAR SARL

Method for modification of radiotherapy treatment delivery

The present invention provides a novel method of contoured-anatomy dose repositioning (CADR) as a means to automatically reposition a patient to better recover the planned dose distribution without reoptimize the treatment plan. Specifically, CADR utilizes planning CT images, the planned dose distribution, and on-line images for repositioning dose distribution on a given day. Contours are also placed upon the images using manual, automatic, template-based, or other techniques. CADR then optimizes the rigid-body repositioning of the patient so that the daily dose distribution closely matches the planned dose distribution. The present invention also provides a method of multiple-margin optimization with daily selection (MMODS) to improve radiation delivery without reoptimization. During the initial optimization procedure, plans are optimized for several margins of various contours (e.g., tight, medium, loose, etc.), or with different objectives (e.g., aggressive treatment, sensitive structure sparing, etc.). Similarly, if multiple patient image sets are available, plans can be optimized for the different anatomical layouts, either using current information, or accumulated information regarding the superposition of organ locations in the combination of images. A user can then choose in real time from a variety of optimized plans, generally with different margins, during the treatment process, and thereby compensate for a recognized change in size or position of the tumor or neighboring tissue.
Owner:TOMOTHERAPY INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products