Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8124 results about "Memory module" patented technology

In computing, a memory module is a printed circuit board on which memory integrated circuits are mounted. Memory modules permit easy installation and replacement in electronic systems, especially computers such as personal computers, workstations, and servers. The first memory modules were proprietary designs that were specific to a model of computer from a specific manufacturer. Later, memory modules were standardized by organizations such as JEDEC and could be used in any system designed to use them.

High density integrated circuit packaging with chip stacking and via interconnections

Chip stacks with decreased conductor length and improved noise immunity are formed by laser drilling of individual chips, such as memory chips, preferably near but within the periphery thereof, and forming conductors therethrough, preferably by metallization or filling with conductive paste which may be stabilized by transient liquid phase (TLP) processes and preferably with or during metallization of conductive pads, possibly including connector patterns on both sides of at least some of the chips in the stack. At least some of the chips in the stack then have electrical and mechanical connections made therebetween, preferably with electroplated solder preforms consistent with TLP processes. The connections may be contained by a layer of resilient material surrounding the connections and which may be formed in-situ. High density circuit packages thus obtained may be mounted on a carrier by surface mount techniques or separable connectors such as a plug and socket arrangement. The carrier may be of the same material as the chip stacks to match coefficients of thermal expansion. High-density circuit packages may also be in the form of removable memory modules in generally planar or prism shaped form similar to a pen or as a thermal conduction module.
Owner:INT BUSINESS MASCH CORP

High density integrated circuit packaging with chip stacking and via interconnections

Chip stacks with decreased conductor length and improved noise immunity are formed by laser drilling of individual chips, such as memory chips, preferably near but within the periphery thereof, and forming conductors therethrough, preferably by metallization or filling with conductive paste which may be stabilized by transient liquid phase (TLP) processes and preferably with or during metallization of conductive pads, possibly including connector patterns on both sides of at least some of the chips in the stack. At least some of the chips in the stack then have electrical and mechanical connections made therebetween, preferably with electroplated solder preforms consistent with TLP processes. The connections may be contained by a layer of resilient material surrounding the connections and which may be formed in-situ. High density circuit packages thus obtained may be mounted on a carrier by surface mount techniques or separable connectors such as a plug and socket arrangement. The carrier may be of the same material as the chip stacks to match coefficients of thermal expansion. High-density circuit packages may also be in the form of removable memory modules in generally planar or prism shaped form similar to a pen or as a thermal conduction module.
Owner:IBM CORP

Method and system for power management including device controller-based device use evaluation and power-state control

A method and system for power management including device controller-based device use evaluation and power-state control provides improved performance in a power-managed processing system. Per-device usage information is measured and evaluated during process execution and is retrieved from the device controller upon a context switch, so that upon reactivation of the process, the previous usage evaluation state can be restored. The device controller can then provide for per-process control of attached device power management states without intervention by the processor and without losing the historical evaluation state when a process is switched out. The device controller can control power-saving states of connected devices in conformity with the usage evaluation without processor intervention and across multiple process execution slices. The device controller may be a memory controller and the controlled devices memory modules or banks within modules if individual banks can be power-managed. Local thresholds provide the decision-making mechanism for each controlled device. The thresholds may be history-based, fixed or adaptive and are generally set initially by the operating system and may be updated by the memory controller adaptively or using historical collected usage evaluation counts or alternatively by the operating system via a system processor.
Owner:IBM CORP

Post patch assembly for mounting devices in a tire interior

A modular electronic assembly for integration with a pneumatic tire includes a mounting patch, a power source, and at least one electronic device supported by a substrate. The mounting patch is preferably adapted for positioning on the inner liner of a pneumatic tire, and the power source is at least partially embedded in the mounting patch. Such embedded positioning of the battery results in an overall structure with a lower center of gravity than previous tire electronics assemblies, thus having increased mechanical stability and survivability in a tire environment. Electronic device(s) supported on the substrate may receive power from the power source, which in some embodiments corresponds to one or more batteries. The substrate supporting the at least one electronic device may be attached to the mounting patch by a variety of fashions. Exemplary attachment configurations may correspond to an adhesive layer, a hook and loop tape combination, or physical interconnection via terminals extending from the power source through the support substrate. Exemplary electronic devices may include such components as condition-responsive devices including transducers, acoustic devices, sensors, etc. for sensing certain environmental conditions such as temperature and/or pressure, tire revolution counters, vehicle speed sensors, sidewall deflection sensors, tire displacement sensors, microprocessors, memory modules, RFID transponders, light assemblies, data transmitters and/or receivers, and power, supply components. Selected of the electronic devices (including one or more antennas associated with any RF devices) may be encapsulated by a non-conductive rubber or elastic material to facilitate effective transmission characteristics. Conductive springs, flexible conductive elastomer or fatigue-resistance metal may be used to interconnect various electronic components (such as an RF device to an antenna).
Owner:MICHELIN RECH & TECH SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products