Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

80337results about "Digital storage" patented technology

Agent based instruction system and method

This invention relates to a system and method for interactive, adaptive, and individualized computer-assisted instruction. This invention includes an agent for each student which adapts to its student and provides individualized guidance to the student and controls to the augmented computer-assisted instructional materials. The instructional materials of this invention are augmented to communicate the student's performance and the material's pedagogical characteristics to the agent and to receive control from the agent. Preferably, the content of the communication between the agent and the materials conforms to specified interface standards so that the agent acts independently of the content of the particular materials. Also preferably, the agent can project using various I/O modalities integrated, engaging, life-like display persona(e) appropriate to the preferences of its student and appear as a virtual tutor to the student. Finally, preferably this invention is implemented on computers interconnected by a network so that instruction can be delivered to geographically distributed students from geographically distributed servers. An important application of this invention is delivering interactive, adaptive, and individualized homework to students in their homes and other locations.

Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices

A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and my have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be a single crystal and may be free-standing. Such a semiconductor may be either lightly n-doped, heavily n-doped, lightly p-doped or heavily p-doped. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor. Two or more of such a semiconductors, including an array of such semiconductors, may be combined to form devices, for example, to form a crossed p-n junction of a device. Such devices at certain sizes may exhibit quantum confinement and other quantum phenomena, and the wavelength of light emitted from one or more of such semiconductors may be controlled by selecting a width of such semiconductors. Such semiconductors and device made therefrom may be used for a variety of applications.

Security architecture with environment sensitive credential sufficiency evaluation

By including environment information in a security policy, a security architecture advantageously allows temporal, locational, connection type and/or client capabilities-related information to affect the sufficiency of a given credential type (and associated authentication scheme) for access to a particular information resource. In some configurations, time of access, originating location (physical or network) and/or connection type form a risk profile that can be factored into credential type sufficiency. In some configurations, changing environmental parameters may cause a previously sufficient credential to become insufficient. Alternatively, an authenticated credential previously insufficient for access at a given trust level may be sufficient based on a changed or more fully parameterized session environment. In some configurations, the use of session tracking facilites (e.g., the information content of session tokens) can be tailored to environmental parameters (e.g., connection type or location). Similarly, capabilities of a particular client entity (e.g., browser support for 128-bit cipher or availablity of a fingerprint scanner or card reader) may affect the availability or sufficiency of particular authentication schemes to achieve a desired trust level.

System and method for verifying delivery and integrity of electronic messages

A server receives a message from a sender and transmits the message through the Internet to a recipient. The server normally transmits the message in a first path through the Internet to the recipient. When the sender indicates at a particular position in the message that the message is registered, the server transmits the message in a second path through the Internet to the recipient. The sender can also provide additional indications in the message to have the server handle the message in other special ways not normally provided by the server. After learning from the receipt or the recipient's agent through the Internet that the message was successfully received, the server creates, and forwards to the sender, an electronic receipt. The receipt includes at least one, and preferably all: the message and any attachments, a delivery success / failure table listing the receipts, and the receipt times, of the message by the recipient's specific agents, and the failure of other agents of the recipient to receive the message and a digital signature of the message and attachments subsequently. By verifying that the digital signature on the sender's receipt matches the digital receipt at the server, the server can verify, without retaining the message, that the receipt is genuine and that the message is accurate.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products