Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

13566results about "Semiconductor lasers" patented technology

Transistor and semiconductor device

A transistor is provided, which is entirely and partially transparent by the use of a transparent channel layer made of zinc oxide or the like. A channel layer 11 formed of a transparent semiconductor such as zinc oxide ZnO. A transparent electrode is used for all of a source 12, a drain 13 and a gate 14, or a part of them. As the transparent electrode, a transparent conductive material such as conductive ZnO doped with, for example, group III elements is used. As a gate insulating layer 15, a transparent insulative material such as insulative ZnO doped with elements capable of taking a valence of one as a valence number or group V elements is used. If a substrate 16 must be transparent, for example, glass, sapphire, plastic or the like can be used as a transparent material.
Owner:JAPAN SCI & TECH CORP

Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices

A III-V nitride homoepitaxial microelectronic device structure comprising a III-V nitride homoepitaxial epi layer on a III-V nitride material substrate, e.g., of freestanding character. Various processing techniques are described, including a method of forming a III-V nitride homoepitaxial layer on a corresponding III-V nitride material substrate, by depositing the III-V nitride homoepitaxial layer by a VPE process using Group III source material and nitrogen source material under process conditions including V / III ratio in a range of from about 1 to about 105, nitrogen source material partial pressure in a range of from about 1 to about 103 torr, growth temperature in a range of from about 500 to about 1250 degrees Celsius, and growth rate in a range of from about 0.1 to about 500 microns per hour. The III-V nitride homoepitaxial microelectronic device structures are usefully employed in device applications such as UV LEDs, high electron mobility transistors, and the like.
Owner:WOLFSPEED INC

Technique for the growth and fabrication of semipolar (Ga,A1,In,B)N thin films, heterostructures, and devices

A method for growth and fabrication of semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga, Al, In, B)N template or nucleation layer on the substrate, and growing the semipolar (Ga, Al, In, B)N thin films, heterostructures or devices on the planar semipolar (Ga, Al, In, B)N template or nucleation layer. The method results in a large area of the semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices being parallel to the substrate surface.
Owner:JAPAN SCI & TECH CORP

Semiconductor laser apparatus and optical apparatus

This semiconductor laser apparatus includes a package constituted by a plurality of members, having sealed space inside and a semiconductor laser chip arranged in the sealed space, while surfaces of the members located in the sealed space are covered with a covering agent made of an ethylene-polyvinyl alcohol copolymer.
Owner:SANYO ELECTRIC CO LTD

Resonant cavity light emitting devices and associated method

A method may produce a resonant cavity light emitting device. A seed gallium nitride crystal and a source material in a nitrogen-containing superheated fluid may provide a medium for mass transport of gallium nitride precursors therebetween. A seed crystal surface may be prepared by applying a first thermal profile between the seed gallium nitride crystal and the source material. Gallium nitride material may be grown on the prepared surface of the seed gallium nitride crystal by applying a second thermal profile between the seed gallium nitride crystal and the source material while the seed gallium nitride crystal and the source material are in the nitrogen-containing superheated fluid. A stack of group III-nitride layers may be deposited on the single-crystal gallium nitride substrate. The stack may include a first mirror sub-stack and an active region adaptable for fabrication into one or more resonant cavity light emitting devices.
Owner:SORAA

Light-emitting device

A light-emitting device includes a group III nitride semiconductor layer of a multilayer structure consisting of a group III nitride semiconductor having a major surface defined by a nonpolar plane or a semipolar plane and having at least an n-type layer and a p-type layer. A surface of the group III nitride semiconductor layer on a light extraction side is a mirror surface. The light-emitting device may further include a transparent electrode in contact with the surface of the group III nitride semiconductor layer on the light extraction side. In this case, a surface of the transparent electrode on the light extraction side is preferably a mirror surface.
Owner:ROHM CO LTD

Electrically-pumped (Ga,In,Al)N vertical-cavity surface-emitting laser

A vertical-cavity surface-emitting laser (VCSEL) comprising a low-loss thin metal contact and current spreading layer within the optical cavity that provides for improved ohmic contact and lateral current distribution, a substrate including a plano-concave optical cavity, a (Ga,In,Al)N multiple quantum well (MQW) active region contained within the optical cavity that generates light when injected by an electrical current, and an integrated micromirror fabricated onto the substrate that provides for optical mode control of the light generated by the active region. A relatively simple process is used to fabricate the VCSEL.
Owner:RGT UNIV OF CALIFORNIA

Method of forming a rare-earth dielectric layer

Methods for forming compositions comprising a single-phase rare-earth dielectric disposed on a substrate are disclosed. In some embodiments, the method forms a semiconductor-on-insulator structure. Compositions and structures that are formed via the method provide the basis for forming high-performance devices and circuits.
Owner:IQE

Semiconductor optoelectronic device and method of fabricating the same

Provided is a semiconductor opto-electronic device that may comprise an active layer including a quantum well and a barrier layer on a substrate, upper and lower waveguide layers on and underneath the active layer, respectively, and upper and lower clad layers on and underneath the upper and lower waveguide layers, respectively. The semiconductor opto-electronic device may further comprise an upper optical confinement layer (OCL) between the active layer and the upper waveguide layer and having an energy gap smaller than the energy gap of the upper waveguide layer and equal to or larger than the energy gap of the barrier layer, and a lower OCL between the active layer and the lower waveguide layer and having an energy gap smaller than the energy gap of the lower waveguide layer and equal to or smaller than the energy gap of the barrier layer. Also provided is a method of fabricating the semiconductor opto-electronic device.
Owner:SAMSUNG ELECTRONICS CO LTD

Metal spatial filter to enhance model reflectivity in a vertical cavity surface emitting laser

An annular metal layer is provided between a conductive oxide layer and a dielectric mirror in a vertical cavity surface emitting laser. The annular metal layer defines the output window for the laser cavity which matches the TEM.sub.00 fundamental mode of the light beam emitted by the active region of the VCSEL. The metal layer outside the output window provides modal reflectivity discrimination against high order transverse modes of the light beam emitted by the active region of the VCSEL.
Owner:XEROX CORP

Mode locking methods and apparatus

In one aspect the invention relates to a frequency varying wave generator. The generator includes a gain element adapted to amplify a wave having a wavelength; a time varying tunable wavelength selective filter element in communication with the gain element, the tunable filter element adapted to selectively filter waves during a period T; and a feedback element in communication with the tunable filter element and the gain element, wherein the tunable wavelength selective filter element, the gain element and the feedback element define a circuit such that the roundtrip time for the wave to propagate through the circuit is substantially equal to a non-zero integer multiple of the period T.
Owner:MASSACHUSETTS INST OF TECH

Process and apparatus for a wavelength tuning source

ActiveUS20050035295A1Low spontaneous-emission backgroundTuning rateOptical measurementsRadiation pyrometryLight beamLength wave
An apparatus and source arrangement for filtering an electromagnetic radiation can be provided which may include at least one spectral separating arrangement configured to physically separate one or more components of the electromagnetic radiation based on a frequency of the electromagnetic radiation. The apparatus and source arrangement may also have at least one continuously rotating optical arrangement which is configured to receive at least one signal that is associated with the one or more components. Further, the apparatus and source arrangement can include at least one beam selecting arrangement configured to receive the signal.
Owner:THE GENERAL HOSPITAL CORP

Method and surface morphology of non-polar gallium nitride containing substrates

An optical device, e.g., LED, laser. The device includes a non-polar gallium nitride substrate member having a slightly off-axis non-polar oriented crystalline surface plane. In a specific embodiment, the slightly off-axis non-polar oriented crystalline surface plane is up to about −0.6 degrees in a c-plane direction, but can be others. In a specific embodiment, the present invention provides a gallium nitride containing epitaxial layer formed overlying the slightly off-axis non-polar oriented crystalline surface plane. In a specific embodiment, the device includes a surface region overlying the gallium nitride epitaxial layer that is substantially free of hillocks.
Owner:SLT TECH

Nitride semiconductor light-emitting device and optical device including the same

A nitride semiconductor light-emitting device includes an emission layer (103) formed on a substrate (100), and the emission layer includes a quantum well layer of GaN1-x−y−zAsxPySbz (0<x+y+z≦0.3) containing Al.
Owner:SHARP KK

Group iii-nitride growth on silicon or silicon germanium substrates and method and devices therefor

A structure including a Si1-xGex substrate and a distributed Bragg reflector layer disposed directly onto the substrate. The distributed Bragg reflector layer includes a repeating pattern that includes at least one aluminum nitride layer and a second layer having the general formula AlyGa1-yN. Another aspect of the present invention is various devices including this structure. Another aspect of the present invention is directed to a method of forming such a structure comprising providing a Si1-xGex substrate and depositing a distributed Bragg reflector layer directly onto the substrate. Another aspect of the present invention is directed to a photodetector or photovoltaic cell device, including a Si1-xGex substrate device, a group III-nitride device and contacts to provide a conductive path for a current generated across at least one of the Si1-xGex substrate device and the group III-nitride device upon incident light.
Owner:NAVY U S A AS REPRESENTED BY THE SEC OF THE THE

Method for producing a gallium nitride epitaxial layer

The invention concerns a method for producing a gallium nitride (GaN) epitaxial layer characterised in that it consists in depositing on a substrate a dielectric layer acting as a mask and depositing on the masked gallium nitride, by epitaxial deposit, so as to induce the deposit of gallium nitride patterns and the anisotropic lateral growth of said patterns, the lateral growth being pursued until the different patterns coalesce. The deposit of the gallium nitride patterns can be carried out ex-situ by dielectric etching or in-situ by treating the substrate for coating it with a dielectric film whereof the thickness is of the order of one angstrom. The invention also concerns the gallium nitride layers obtained by said method.
Owner:SAINT GOBAIN CRISTAUX & DETECTEURS

Combinatorial fabrication and high-throughput screening of optoelectronic devices

Methods and apparatus for the rapid and parallel synthesis of optoelectronic cell devices and for the high-throughput screening of such devices for useful properties are disclosed. The methods comprise the parallel synthesis of arrays of optoelectronic devices fabricated within an addressable sample-holding matrix. Each optoelectronic device is created and tested within an addressable sample-holder in the fabrication device.
Owner:AERIS CAPITAL SUSTAINABLE IP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products