Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1743results about How to "Generate efficiently" patented technology

Mapping tool graphical user interface

A graphical user interface and method for creating a mapping between a source object and a destination or target object are provided. The user interface includes a source screen region which displays a graphical representation of a source object, a target screen region which displays a graphical representation of a target object, and a mapping screen region which allows a user to create a mapping between the graphical representation of the source object and the graphical representation of the target object using graphical mapping indicia. The methodology includes displaying a graphical representation of a source object in a source screen region, displaying a graphical representation of a target object in a target screen region, creating a mapping between the graphical representation of the source object and the graphical representation of the target object in a mapping screen region using graphical mapping indicia, and displaying the mapping in the mapping screen region. The source and target objects may be schemas, spreadsheets, documents, databases, or other information sources, and the graphical mapping indicia may include link indicia and / or function objects linking nodes in the target object with nodes in the source object. The mapping may be compiled into code used by a runtime engine to translate source documents into target documents.

System and method for 3D photography and/or analysis of 3D images and/or display of 3D images

When 3D viewing means become much more available and common, it will be very sad that the many great movies that exist today will be able to be viewed in 3D only through limited and partial software attempts to recreate the 3D info. Films today are not filmed in 3D due to various problems, and mainly since a normal stereo camera could be very problematic when filming modern films, since for example it does not behave properly when zooming in or out is used, and it can cause many problems when filming for example smaller scale models for some special effects. For example, a larger zoom requires a correspondingly larger distance between the lenses, so that for example if a car is photographed at a zoom factor of 1:10, the correct right-left disparity will be achieved only if the lenses move to an inter-ocular distance of for example 65 cm instead of the normal 6.5 cm. The present invention tries to solve the above problems by using a 3D camera which can automatically adjust in a way that solves the zoom problem, and provides a solution also for filming smaller models. The angle between the two lenses is preferably changed according to the distance and position of the object that is at the center of focus, and changing the zoom affects automatically both the distance between the lenses and their angle, since changing merely the distance without changing the convergence angle would cause the two cameras to see completely different parts of the image. The patent also shows that similar methods can be used for example for a much better stereoscopic telescope with or without a varying zoom factor. In addition, the patent shows various ways to generate efficiently a 3D knowledge of the surrounding space, which can be used also for example in robots for various purposes, and also describes a few possible improvements in 3d viewing.

Inductive data and power link suitable for integration

A system providing an inductive power and data link between an external transmitter and miniature internal receiver is presented. The system is suited to applications where the receiver must be of a small size and the system must consume very little power, such as an implanted biomedical device. The system is also compatible with systems where bi-directional communications are required. The novel transmitter and receiver form an improved forward data telemetry system. The transmitter consists of a Class-E converter with its optimum operating frequency being synchronously, instantaneously and efficiently altered in accordance with the data to be transmitted, thereby producing an FSK modulated magnetic field of substantially constant amplitude. The constant amplitude output allows for the continuous, data-independent transfer of power to the miniature receiver and its associated electronics. The present invention also represents an improvement over the high efficiency Class-E converters previously patented by the inventors. The receiver consists of a coil and an integrated rectifying system to recover operating power from the incident magnetic field, as well as an FSK demodulator whose operation is based on the multiphase comparison of charging times of integrated capacitors. The described FSK demodulator approach removes deleterious effects resulting from low-frequency changes in the transmitter frequency, and eliminates time distortion artifacts generated by circuit imbalances and asymmetries in the power recovery process. The combination of the transmitter and receiver improvements yields a reliable data transfer system unaffected by circuit imbalances and incidental variations in the amplitude and frequency of the magnetic field.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products