Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

443results about "Handling data according to predetermined rules" patented technology

Microprocessors

A processor (100) is provided that is a programmable fixed point digital signal processor (DSP) with variable instruction length, offering both high code density and easy programming. Architecture and instruction set are optimized for low power consumption and high efficiency execution of DSP algorithms, such as for wireless telephones, as well as pure control tasks. The processor includes an instruction buffer unit (106), a program flow control unit (108), an address / data flow unit (110), a data computation unit (112), and multiple interconnecting busses. Dual multiply-accumulate blocks improve processing performance. A memory interface unit (104) provides parallel access to data and instruction memories. The instruction buffer is operable to buffer single and compound instructions pending execution thereof. A decode mechanism is configured to decode instructions from the instruction buffer. The use of compound instructions enables effective use of the bandwidth available within the processor. A soft dual memory instruction can be compiled from separate first and second programmed memory instructions. Instructions can be conditionally executed or repeatedly executed. Bit field processing and various addressing modes, such as circular buffer addressing, further support execution of DSP algorithms. The processor includes a multistage execution pipeline with pipeline protection features. Various functional modules can be separately powered down to conserve power. The processor includes emulation and code debugging facilities with support for cache analysis.
Owner:TEXAS INSTR INC

Apparatus and method for performing floating point addition

An apparatus and method are provided for performing an addition operation on operands A and B in order to produce a result R, the operands A and B and the result R being floating point values each having a significand and an exponent. The apparatus comprises prediction circuitry for generating a shift indication based on a prediction of the number of leading zeros that would be present in an output produced by subjecting the operands A and B to an unlike signed addition. Further, result pre-normalization circuitry performs a shift operation on the significands of both operand A and operand B prior to addition of the significands, this serving to discard a number of most significant bits of the significands of both operands as determined by the shift indication in order to produce modified significands for operands A and B. Operand analysis circuitry detects, with reference to the exponents of operands A and B, the presence of a leading bit cancellation condition, and addition circuitry is configured, in the presence of the leading bit cancellation condition, to perform an addition of the modified significands for operands A and B, in order to produce the significand of the result R. Such an approach provides a particularly simple and efficient apparatus for performing addition operations.
Owner:ARM LTD

Method and system for performing permutations with bit permutation instructions

The present invention provides permutation instructions which can be used in software executed in a programmable processor for solving permutation problems in cryptography, multimedia and other applications. PPERM and PPERM3R instructions are defined to perform permutations by a sequence of instructions with each sequence specifying the position in the source for each bit in the destination. In the PPERM instruction bits in the destination register that change are updated and bits in the destination register that do not change are set to zero. In the PPERM3R instruction bits in the destination register that change are updated and bits in the destination register that do not change are copied from intermediate result of previous PPERM3R instructions. Both PPERM and PPERM3R instruction can individually do permutation with bit repetition. Both PPERM and PPERM3R instruction can individually do permutation of bits stored in more than one register. In an alternate embodiment, a GRP instruction is defined to perform permutations. The GRP instruction divides the initial sequence in the source register into two groups depending on control bits. The first group is combined with the second group to form an intermediate sequence toward the desired final permutation. The total number of GRP instructions for a bit level permutation of n bits is not greater than 1gn. The GRP instruction can be used to permute k-bit subwords packed into an n bits word, where k can be 1, 2, . . . , or n bits, and k*r=n. At most 1gr permutation instructions are used in the permutation instruction sequence, where r is the number of k-bit subwords to be permuted. The GRP instruction can also be used to permute 2n bits stored in two n-bit registers. The total number of instructions for bit permutation of 2n bits is 21gn+4, and two of those instructions are SHIFT PAIR instruction.
Owner:TELEPUTERS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products